Prompt fission neutron spectra(PFNS)have a significant role in nuclear science and technology.In this study,the PFNS for^(239)Pu are evaluated using both differential and integral experimental data.A method that lever...Prompt fission neutron spectra(PFNS)have a significant role in nuclear science and technology.In this study,the PFNS for^(239)Pu are evaluated using both differential and integral experimental data.A method that leverages integral criticality benchmark experiments to constrain the PFNS data is introduced.The measured central values of the PFNS are perturbed by constructing a covariance matrix.The PFNS are sampled using two types of covariance matrices,either generated with an assumed correlation matrix and incorporating experimental uncertainties or derived directly from experimental reports.The joint Monte Carlo transport code is employed to perform transport simulations on five criticality benchmark assemblies by utilizing perturbed PFNS data.Extensive simulations result in an optimized PFNS that shows improved agreement with the integral criticality benchmark experiments.This study introduces a novel approach for optimizing differential experimental data through integral experiments,particularly when a covariance matrix is not provided.展开更多
Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of m...Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.展开更多
基金supported by the National Natural Science Foundation of China(No.12347126)。
文摘Prompt fission neutron spectra(PFNS)have a significant role in nuclear science and technology.In this study,the PFNS for^(239)Pu are evaluated using both differential and integral experimental data.A method that leverages integral criticality benchmark experiments to constrain the PFNS data is introduced.The measured central values of the PFNS are perturbed by constructing a covariance matrix.The PFNS are sampled using two types of covariance matrices,either generated with an assumed correlation matrix and incorporating experimental uncertainties or derived directly from experimental reports.The joint Monte Carlo transport code is employed to perform transport simulations on five criticality benchmark assemblies by utilizing perturbed PFNS data.Extensive simulations result in an optimized PFNS that shows improved agreement with the integral criticality benchmark experiments.This study introduces a novel approach for optimizing differential experimental data through integral experiments,particularly when a covariance matrix is not provided.
基金Under the auspices of National Natural Science Foundation of China(No.41230751,41101547)Scientific Research Foundation of Graduate School of Nanjing University(No.2012CL14)
文摘Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.