With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning ...With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning the interaction between the atmospheric boundary layer and wind turbine arrays,the generated wakes and their interactions,and wind energy harvesting.However,the majority of the existing ML models for predicting wind turbine wakes merely recreate Computational fluid dynamics(CFD)simulated data with analogous accuracy but reduced computational costs,thus providing surrogate models rather than enhanced data-enabled physics insights.Although ML-based surrogate models are useful to overcome current limitations associated with the high computational costs of CFD models,using ML to unveil processes from experimental data or enhance modeling capabilities is deemed a potential research direction to pursue.In this letter,we discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations,along with new promising research strategies.展开更多
As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)system...As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.展开更多
https://www.sciencedirect.com/journal/energy-and-buildings/vol/338/suppl/C Volume 338,1 July 2025[OA](1)Real long-term performance evaluation of an improved office building operation involving a Data-driven model pred...https://www.sciencedirect.com/journal/energy-and-buildings/vol/338/suppl/C Volume 338,1 July 2025[OA](1)Real long-term performance evaluation of an improved office building operation involving a Data-driven model predictive control by Peter Klanatsky,Fran ois Veynandt,Christian Heschl,et al,Article 115590 Abstract:Data-driven Model Predictive Control(DMPC)strategies,coupled with holistically optimized HVAC system control,represent a promising approach to achieve climate targets through significant reductions in building energy consumption and associated emissions.To validate this potential in a real-world environment,a comprehensive optimization study was conducted on an office building serving as a living laboratory.Through systematic analysis of historical operational data,multiple Energy Conservation Measures(ECMs)were identified and implemented.The cornerstone of these improvements was the development and deployment of a centralized adaptive DMPC system,which was operated and evaluated over a full year.展开更多
Tactical Data Link(TDL)is a communication system that utilizes a particular message format and a protocol to transmit data via wireless channels in an instant,automatic,and secure way.So far,TDL has shown its excellen...Tactical Data Link(TDL)is a communication system that utilizes a particular message format and a protocol to transmit data via wireless channels in an instant,automatic,and secure way.So far,TDL has shown its excellence in military applications.Current TDL adopts a distributed architecture to enhance anti-destruction capacity.However,It still faces a problem of data inconsistency and thus cannot well support cooperation across multiple militarily domains.To tackle this problem,we propose to leverage blockchain to build an automatic and adaptive data transmission control scheme for TDL.It achieves automatic data transmission and realizes information consistency among different TDL entities.Besides,applying smart contracts based on blockchain further enables adjusting data transmission policies automatically.Security analysis and experimental results based on simulations illustrate the effectiveness and efficiency of our proposed scheme.展开更多
To address the private data management problems and realize privacy-preserving data sharing,a blockchain-based transaction system named Ecare featuring information transparency,fairness and scalability is proposed.The...To address the private data management problems and realize privacy-preserving data sharing,a blockchain-based transaction system named Ecare featuring information transparency,fairness and scalability is proposed.The proposed system formulates multiple private data access control strategies,and realizes data trading and sharing through on-chain transactions,which makes transaction records transparent and immutable.In our system,the private data are encrypted,and the role-based account model ensures that access to the data requires owner’s authorization.Moreover,a new consensus protocol named Proof of Transactions(PoT)proposed by ourselves has been used to improve consensus efficiency.The value of Ecare is not only that it aggregates telemedicine,data transactions,and other features,but also that it translates these actions into transaction events stored in the blockchain,making them transparent and immutable to all participants.The proposed system can be extended to more general big data privacy protection and data transaction scenarios.展开更多
With the simultaneous rise of energy costs and demand for cloud computing, efficient control of data centers becomes crucial. In the data center control problem, one needs to plan at every time step how many servers t...With the simultaneous rise of energy costs and demand for cloud computing, efficient control of data centers becomes crucial. In the data center control problem, one needs to plan at every time step how many servers to switch on or off in order to meet stochastic job arrivals while trying to minimize electricity consumption. This problem becomes particularly challenging when servers can be of various types and jobs from different classes can only be served by certain types of server, as it is often the case in real data centers. We model this problem as a robust Markov decision process(i.e., the transition function is not assumed to be known precisely). We give sufficient conditions(which seem to be reasonable and satisfied in practice) guaranteeing that an optimal threshold policy exists. This property can then be exploited in the design of an efficient solving method, which we provide.Finally, we present some experimental results demonstrating the practicability of our approach and compare with a previous related approach based on model predictive control.展开更多
Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, w...Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.展开更多
Simultaneous dimming controlling and data transmission are usually required in a white LED based indoor visible light communication system.However,the diming controlling of LED normally interferes the data transmissio...Simultaneous dimming controlling and data transmission are usually required in a white LED based indoor visible light communication system.However,the diming controlling of LED normally interferes the data transmission due to the modulation nonlinearity of LED.In order to solve this problem,a scheme by separating the LEDs for the functions of dimming control and data transmission respectively is proposed in this paper.In the scheme,the LEDs used for dimming control function are driven by a dc amplified circuit,and the LEDs for data transmission are driven by a digital modulation circuit respectively.In this way,the modulation distortion to the data signal caused by the modulation nonlinearity can be avoided even if the dimming is at high level dc driven current.The proof-of-concept experiment of a 2.5Mbit/s visible light communication system demonstrates that the dimming controlling and data transmission can be realized simultaneously in a simple way,and the data transmission is not affected by the dimming controlling function.Compared to previous methods,the scheme in this paper is simpler and cost effective,and makes sense when high rate data is transmitted in a visible light communication system.展开更多
The characteristics of USB data acquisition system NI cDAQ and its control software LabVIEW are briefed.The methods for controlling GDS pressure and volume controller by LabVIEW through serial port communication are p...The characteristics of USB data acquisition system NI cDAQ and its control software LabVIEW are briefed.The methods for controlling GDS pressure and volume controller by LabVIEW through serial port communication are presented.A practical data sharing method among geotechnical testing systems is illustrated.As an application case on a modified conventional soil triaxial testing system,the automatic triaxial testing system is designed by LabVIEW.Based on the control panel,the cell pressure and back pressure can be controlled independently and the testing data can be recorded automatically.展开更多
The past decade has seen the rapid development of data in many areas.Data has enormous commercial potential as a new strategic resource that may efficiently boost technical growth and service innovation.However,indivi...The past decade has seen the rapid development of data in many areas.Data has enormous commercial potential as a new strategic resource that may efficiently boost technical growth and service innovation.However,individuals are becoming increasingly concerned about data misuse and leaks.To address these issues,in this paper,we propose TrustControl,a trusted data usage control system to control,process,and protect data usage without revealing privacy.A trusted execution environment(TEE)is exploited to process confidential user data.First of all,we design a secure and reliable remote attestation mechanism for ARM TrustZone,which can verify the security of the TEE platform and function code,thus guaranteeing data processing security.Secondly,to address the security problem that the raw data may be misused,we design a remote dynamic code injection method to regulate that data can only be processed for the expected purpose.Our solution focuses on protecting the sensitive data of the data owner and the function code of the data user to prevent data misuse and leakage.Furthermore,we implement the prototype system of TrustControl on TrustZone-enabled hardware.Real-world experiment results demonstrate that the proposed Trust-Control is secure and the performance overhead of introducing our prototype system is very low.展开更多
With the development of mining industry,people have obtained profits from it,but they are facing environmental damages.In order to monitor these environmental changes,a spectral library is set up for the spectrum data...With the development of mining industry,people have obtained profits from it,but they are facing environmental damages.In order to monitor these environmental changes,a spectral library is set up for the spectrum data organization and management of mine typical objects.Most of the spectrum data come from the long-term field measuring in mining area and other spectral libraries.For the data quality control and error detection in the measuring data,an inner precision calculation method is presented and a series of interactive graphical controls are developed for the spectrum visualization and analysis.Through extracting and saving spectrum characters for the mine typical objects,realizs spectrum matching and classification for new measured spectrum samples are realized by using Euclidean distance,Aitchison distance,Pearson correlation coefficient and vector angular cosine methods.Based on the matching result,this work is able to gather dynamically physicochemical environment parameters from the library and gives an early warning for the mine environmental changes.展开更多
In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs a...In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs and pressure drops in water distribution networks. The proposed approach combines the artificial neural network, genetic algorithm, and fuzzy inference system to improve the performance of the supervisory control and data acquisition stations through a new control philosophy for instruments and control valves in the reservoirs of the water transfer networks. First, a multi-core artificial neural network model, including a multi-layer perceptron and radial based function, is proposed to forecast the daily consumption of the water in a reservoir. A genetic algorithm is proposed to optimize the parameters of the artificial neural networks. Then, the online height of water in the reservoir and the output of artificial neural networks are used as inputs of a fuzzy inference system to estimate the flow rate of the reservoir inlet. Finally, the estimated inlet flow is translated into the input valve position using a transform control unit supported by a nonlinear autoregressive exogenous model. The proposed approach is applied in the Tehran water transfer network. The results of this study show that the usage of the proposed approach significantly reduces the deviation of the reservoir height from the desired levels.展开更多
In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved slidi...In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.展开更多
China's sugar manufacturing process has been changed alternately for many years and has formed a more mature production model now. In order to fundamentally improve the quality and efficiency of sugar production, ...China's sugar manufacturing process has been changed alternately for many years and has formed a more mature production model now. In order to fundamentally improve the quality and efficiency of sugar production, it is necessary to establish a volume data monitoring system on the original basis, effectively solve the problem of information islands during the system operation, and ensure that the whole sugar production process can be efficiently controlled. Based on this, this paper takes the design importance of data monitoring system in sugar production as the breakthrough point, compiles the design scheme of data monitoring system in sugar production, and finally puts forward specific measures to improve the operation level of data control system in sugar production for reference.展开更多
The coastal area of southern China is frequently affected by marine meteorological disasters,and is also one of the key areas that influence the short-term climate change of China.Due to a lack of observational facili...The coastal area of southern China is frequently affected by marine meteorological disasters,and is also one of the key areas that influence the short-term climate change of China.Due to a lack of observational facilities and techniques,little has been done in this area in terms of operational weather monitoring and scientific research on atmospheric and marine environment.With the support of China Meteorological Administration (CMA) and Guangdong Meteorological Bureau (GMB),the Marine Meteorological Science Experiment Base (MMSEB) at Bohe,Maoming has been jointly established by Guangzhou Institute of Tropical and Marine Meteorology (GITMM) and Maoming Meteorological Bureau (MMB) of Guangdong Province after three years of hard work.It has become an integrated coastal observation base that is equipped with a complete set of sophisticated instruments.Equipment maintenance and data quality control procedures have been implemented to ensure the long-term,steady operation of the instruments and the availability of high quality data.Preliminary observations show that the data obtained by the MMSEB reveal many interesting features in the boundary layer structure and air-sea interaction in such disastrous weather as typhoons and sea fog.The MMSEB is expected to play an important role in the scientific research of disastrous weather related to marine meteorology.展开更多
In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the in...In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.展开更多
This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, use...This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, uses a response surface modeling(RSM) methodology and serves as a visualization and analysis tool(VAT) for three-dimensional air quality data obtained by atmospheric models. The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits. The case study of contiguous U.S.demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias 〈 2% and assisting in air quality policy making in near real time.展开更多
In cloud,data access control is a crucial way to ensure data security.Functional encryption(FE) is a novel cryptographic primitive supporting fine-grained access control of encrypted data in cloud.In FE,every cipherte...In cloud,data access control is a crucial way to ensure data security.Functional encryption(FE) is a novel cryptographic primitive supporting fine-grained access control of encrypted data in cloud.In FE,every ciphertext is specified with an access policy,a decryptor can access the data if and only if his secret key matches with the access policy.However,the FE cannot be directly applied to construct access control scheme due to the exposure of the access policy which may contain sensitive information.In this paper,we deal with the policy privacy issue and present a mechanism named multi-authority vector policy(MAVP) which provides hidden and expressive access policy for FE.Firstly,each access policy is encoded as a matrix and decryptors can only obtain the matched result from the matrix in MAVP.Then,we design a novel function encryption scheme based on the multi-authority spatial policy(MAVPFE),which can support privacy-preserving yet non-monotone access policy.Moreover,we greatly improve the efficiency of encryption and decryption in MAVP-FE by shifting the major computation of clients to the outsourced server.Finally,the security and performance analysis show that our MAVP-FE is secure and efficient in practice.展开更多
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金supported by the National Science Foundation(NSF)CBET,Fluid Dynamics CAREER program(Grant No.2046160),program manager Ron Joslin.
文摘With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning the interaction between the atmospheric boundary layer and wind turbine arrays,the generated wakes and their interactions,and wind energy harvesting.However,the majority of the existing ML models for predicting wind turbine wakes merely recreate Computational fluid dynamics(CFD)simulated data with analogous accuracy but reduced computational costs,thus providing surrogate models rather than enhanced data-enabled physics insights.Although ML-based surrogate models are useful to overcome current limitations associated with the high computational costs of CFD models,using ML to unveil processes from experimental data or enhance modeling capabilities is deemed a potential research direction to pursue.In this letter,we discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations,along with new promising research strategies.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R343),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia for funding this research work through the project number NBU-FFR-2025-1092-10.
文摘As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.
文摘https://www.sciencedirect.com/journal/energy-and-buildings/vol/338/suppl/C Volume 338,1 July 2025[OA](1)Real long-term performance evaluation of an improved office building operation involving a Data-driven model predictive control by Peter Klanatsky,Fran ois Veynandt,Christian Heschl,et al,Article 115590 Abstract:Data-driven Model Predictive Control(DMPC)strategies,coupled with holistically optimized HVAC system control,represent a promising approach to achieve climate targets through significant reductions in building energy consumption and associated emissions.To validate this potential in a real-world environment,a comprehensive optimization study was conducted on an office building serving as a living laboratory.Through systematic analysis of historical operational data,multiple Energy Conservation Measures(ECMs)were identified and implemented.The cornerstone of these improvements was the development and deployment of a centralized adaptive DMPC system,which was operated and evaluated over a full year.
基金This work is sponsored by the open grant of the Tactical Data Link Lab of the 20th Research Institute of China Electronics Technology Group Corporation,P.R.China(Grant CLDL-20182119)the National Natural Science Foundation of China under Grants 61672410 and 61802293+2 种基金the Key Lab of Information Network Security,Ministry of Public Security(Grant C18614)the Academy of Finland(Grants 308087,314203,and 335262)the Shaanxi Innovation Team project under grant 2018TD-007,and the 111 project under grant B16037.
文摘Tactical Data Link(TDL)is a communication system that utilizes a particular message format and a protocol to transmit data via wireless channels in an instant,automatic,and secure way.So far,TDL has shown its excellence in military applications.Current TDL adopts a distributed architecture to enhance anti-destruction capacity.However,It still faces a problem of data inconsistency and thus cannot well support cooperation across multiple militarily domains.To tackle this problem,we propose to leverage blockchain to build an automatic and adaptive data transmission control scheme for TDL.It achieves automatic data transmission and realizes information consistency among different TDL entities.Besides,applying smart contracts based on blockchain further enables adjusting data transmission policies automatically.Security analysis and experimental results based on simulations illustrate the effectiveness and efficiency of our proposed scheme.
基金This work was supported by the National Key R&D Program of China(No.2018YFB1700100)the National Natural Science Foundation of China(No.61873317)。
文摘To address the private data management problems and realize privacy-preserving data sharing,a blockchain-based transaction system named Ecare featuring information transparency,fairness and scalability is proposed.The proposed system formulates multiple private data access control strategies,and realizes data trading and sharing through on-chain transactions,which makes transaction records transparent and immutable.In our system,the private data are encrypted,and the role-based account model ensures that access to the data requires owner’s authorization.Moreover,a new consensus protocol named Proof of Transactions(PoT)proposed by ourselves has been used to improve consensus efficiency.The value of Ecare is not only that it aggregates telemedicine,data transactions,and other features,but also that it translates these actions into transaction events stored in the blockchain,making them transparent and immutable to all participants.The proposed system can be extended to more general big data privacy protection and data transaction scenarios.
文摘With the simultaneous rise of energy costs and demand for cloud computing, efficient control of data centers becomes crucial. In the data center control problem, one needs to plan at every time step how many servers to switch on or off in order to meet stochastic job arrivals while trying to minimize electricity consumption. This problem becomes particularly challenging when servers can be of various types and jobs from different classes can only be served by certain types of server, as it is often the case in real data centers. We model this problem as a robust Markov decision process(i.e., the transition function is not assumed to be known precisely). We give sufficient conditions(which seem to be reasonable and satisfied in practice) guaranteeing that an optimal threshold policy exists. This property can then be exploited in the design of an efficient solving method, which we provide.Finally, we present some experimental results demonstrating the practicability of our approach and compare with a previous related approach based on model predictive control.
文摘Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.
基金financially supported by National Natural Science Foundation of China(No.61475094)National 973 Program of China(No.2013CB329202)
文摘Simultaneous dimming controlling and data transmission are usually required in a white LED based indoor visible light communication system.However,the diming controlling of LED normally interferes the data transmission due to the modulation nonlinearity of LED.In order to solve this problem,a scheme by separating the LEDs for the functions of dimming control and data transmission respectively is proposed in this paper.In the scheme,the LEDs used for dimming control function are driven by a dc amplified circuit,and the LEDs for data transmission are driven by a digital modulation circuit respectively.In this way,the modulation distortion to the data signal caused by the modulation nonlinearity can be avoided even if the dimming is at high level dc driven current.The proof-of-concept experiment of a 2.5Mbit/s visible light communication system demonstrates that the dimming controlling and data transmission can be realized simultaneously in a simple way,and the data transmission is not affected by the dimming controlling function.Compared to previous methods,the scheme in this paper is simpler and cost effective,and makes sense when high rate data is transmitted in a visible light communication system.
基金Laboratory and numerical modelling of unsaturated flow in fractured soil and rock(50609012)Fund Proposer:ZHANG Hua.
文摘The characteristics of USB data acquisition system NI cDAQ and its control software LabVIEW are briefed.The methods for controlling GDS pressure and volume controller by LabVIEW through serial port communication are presented.A practical data sharing method among geotechnical testing systems is illustrated.As an application case on a modified conventional soil triaxial testing system,the automatic triaxial testing system is designed by LabVIEW.Based on the control panel,the cell pressure and back pressure can be controlled independently and the testing data can be recorded automatically.
基金This work was supported by the National Key R&D Program of China(No.2021YFB2700601)Research Project of Hainan University(No.HD-KYH-2021240)+2 种基金Finance Science and Technology Project of Hainan Province(No.ZDKJ2020009 and ZDKJ2020012)National Natural Science Foundation of China(No.62163011,62162022 and 62162024)Key Projects in Hainan Province(No.ZDYF2021GXJS003 and ZDYF2020040).
文摘The past decade has seen the rapid development of data in many areas.Data has enormous commercial potential as a new strategic resource that may efficiently boost technical growth and service innovation.However,individuals are becoming increasingly concerned about data misuse and leaks.To address these issues,in this paper,we propose TrustControl,a trusted data usage control system to control,process,and protect data usage without revealing privacy.A trusted execution environment(TEE)is exploited to process confidential user data.First of all,we design a secure and reliable remote attestation mechanism for ARM TrustZone,which can verify the security of the TEE platform and function code,thus guaranteeing data processing security.Secondly,to address the security problem that the raw data may be misused,we design a remote dynamic code injection method to regulate that data can only be processed for the expected purpose.Our solution focuses on protecting the sensitive data of the data owner and the function code of the data user to prevent data misuse and leakage.Furthermore,we implement the prototype system of TrustControl on TrustZone-enabled hardware.Real-world experiment results demonstrate that the proposed Trust-Control is secure and the performance overhead of introducing our prototype system is very low.
基金Supported by the National Key Technology R&D Program of China(No.2012BAH27B04,2011BAC03B03)the National Natural Science Foundation of China(No.41471330)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(20113718110001)SDUST Research Fund(2011KYTD103)
文摘With the development of mining industry,people have obtained profits from it,but they are facing environmental damages.In order to monitor these environmental changes,a spectral library is set up for the spectrum data organization and management of mine typical objects.Most of the spectrum data come from the long-term field measuring in mining area and other spectral libraries.For the data quality control and error detection in the measuring data,an inner precision calculation method is presented and a series of interactive graphical controls are developed for the spectrum visualization and analysis.Through extracting and saving spectrum characters for the mine typical objects,realizs spectrum matching and classification for new measured spectrum samples are realized by using Euclidean distance,Aitchison distance,Pearson correlation coefficient and vector angular cosine methods.Based on the matching result,this work is able to gather dynamically physicochemical environment parameters from the library and gives an early warning for the mine environmental changes.
文摘In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs and pressure drops in water distribution networks. The proposed approach combines the artificial neural network, genetic algorithm, and fuzzy inference system to improve the performance of the supervisory control and data acquisition stations through a new control philosophy for instruments and control valves in the reservoirs of the water transfer networks. First, a multi-core artificial neural network model, including a multi-layer perceptron and radial based function, is proposed to forecast the daily consumption of the water in a reservoir. A genetic algorithm is proposed to optimize the parameters of the artificial neural networks. Then, the online height of water in the reservoir and the output of artificial neural networks are used as inputs of a fuzzy inference system to estimate the flow rate of the reservoir inlet. Finally, the estimated inlet flow is translated into the input valve position using a transform control unit supported by a nonlinear autoregressive exogenous model. The proposed approach is applied in the Tehran water transfer network. The results of this study show that the usage of the proposed approach significantly reduces the deviation of the reservoir height from the desired levels.
文摘In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.
文摘China's sugar manufacturing process has been changed alternately for many years and has formed a more mature production model now. In order to fundamentally improve the quality and efficiency of sugar production, it is necessary to establish a volume data monitoring system on the original basis, effectively solve the problem of information islands during the system operation, and ensure that the whole sugar production process can be efficiently controlled. Based on this, this paper takes the design importance of data monitoring system in sugar production as the breakthrough point, compiles the design scheme of data monitoring system in sugar production, and finally puts forward specific measures to improve the operation level of data control system in sugar production for reference.
基金National Public Benefit Research Foundation (Meteorology) (GYHY200906008)
文摘The coastal area of southern China is frequently affected by marine meteorological disasters,and is also one of the key areas that influence the short-term climate change of China.Due to a lack of observational facilities and techniques,little has been done in this area in terms of operational weather monitoring and scientific research on atmospheric and marine environment.With the support of China Meteorological Administration (CMA) and Guangdong Meteorological Bureau (GMB),the Marine Meteorological Science Experiment Base (MMSEB) at Bohe,Maoming has been jointly established by Guangzhou Institute of Tropical and Marine Meteorology (GITMM) and Maoming Meteorological Bureau (MMB) of Guangdong Province after three years of hard work.It has become an integrated coastal observation base that is equipped with a complete set of sophisticated instruments.Equipment maintenance and data quality control procedures have been implemented to ensure the long-term,steady operation of the instruments and the availability of high quality data.Preliminary observations show that the data obtained by the MMSEB reveal many interesting features in the boundary layer structure and air-sea interaction in such disastrous weather as typhoons and sea fog.The MMSEB is expected to play an important role in the scientific research of disastrous weather related to marine meteorology.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.
基金Financial and data support for this work is provided by the U.S. Environmental Protection Agency (No. GS-10F-0205T)partly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (No. h2xj D612004 Ш )+1 种基金the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (No. SCAPC201308)the project of Atmospheric Haze Collaboration Control Technology Design (No. XDB05030400) from Chinese Academy of Sciences
文摘This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, uses a response surface modeling(RSM) methodology and serves as a visualization and analysis tool(VAT) for three-dimensional air quality data obtained by atmospheric models. The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits. The case study of contiguous U.S.demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias 〈 2% and assisting in air quality policy making in near real time.
基金supported by the National Science Foundation of China (No.61373040,No.61173137)The Ph.D.Pro-grams Foundation of Ministry of Education of China(20120141110073)Key Project of Natural Science Foundation of Hubei Province (No.2010CDA004)
文摘In cloud,data access control is a crucial way to ensure data security.Functional encryption(FE) is a novel cryptographic primitive supporting fine-grained access control of encrypted data in cloud.In FE,every ciphertext is specified with an access policy,a decryptor can access the data if and only if his secret key matches with the access policy.However,the FE cannot be directly applied to construct access control scheme due to the exposure of the access policy which may contain sensitive information.In this paper,we deal with the policy privacy issue and present a mechanism named multi-authority vector policy(MAVP) which provides hidden and expressive access policy for FE.Firstly,each access policy is encoded as a matrix and decryptors can only obtain the matched result from the matrix in MAVP.Then,we design a novel function encryption scheme based on the multi-authority spatial policy(MAVPFE),which can support privacy-preserving yet non-monotone access policy.Moreover,we greatly improve the efficiency of encryption and decryption in MAVP-FE by shifting the major computation of clients to the outsourced server.Finally,the security and performance analysis show that our MAVP-FE is secure and efficient in practice.