The accurate prediction of battery pack capacity in electric vehicles(EVs)is crucial for ensuring safety and optimizing performance.Despite extensive research on predicting cell capacity using laboratory data,predicti...The accurate prediction of battery pack capacity in electric vehicles(EVs)is crucial for ensuring safety and optimizing performance.Despite extensive research on predicting cell capacity using laboratory data,predicting the capacity of onboard battery packs from field data remains challenging due to complex operating conditions and irregular EV usage in real-world settings.Most existing methods rely on extracting health feature parameters from raw data for capacity prediction of onboard battery packs,however,selecting specific parameters often results in a loss of critical information,which reduces prediction accuracy.To this end,this paper introduces a novel framework combining deep learning and data compression techniques to accurately predict battery pack capacity onboard.The proposed data compression method converts monthly EV charging data into feature maps,which preserve essential data characteristics while reducing the volume of raw data.To address missing capacity labels in field data,a capacity labeling method is proposed,which calculates monthly battery capacity by transforming the ampere-hour integration formula and applying linear regression.Subsequently,a deep learning model is proposed to build a capacity prediction model,using feature maps from historical months to predict the battery capacity of future months,thus facilitating accurate forecasts.The proposed framework,evaluated using field data from 20 EVs,achieves a mean absolute error of 0.79 Ah,a mean absolute percentage error of 0.65%,and a root mean square error of 1.02 Ah,highlighting its potential for real-world EV applications.展开更多
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da...Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.展开更多
Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre...Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.展开更多
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N)...Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.展开更多
NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on t...NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on triangulated-surfaces model is put forward.Normal-vector angles between triangles are computed to find prime vertices for removal. Ring datastructure is adopted to save massive data effectively. It allows the efficient retrieval of allneighboring vertices and triangles of a given vertices. To avoid long and thin triangles, a newre-triangulation approach based on normalized minimum-vertex-distance is proposed, in which thevertex distance and interior angle of triangle are considered. Results indicate that the compressionmethod has high efficiency and can get reliable precision. The method can be applied in fastreverse engineering to acquire an optimal subset of the original massive data.展开更多
High compression ratio,high decoding performance,and progressive data transmission are the most important require-ments of vector data compression algorithms for WebGIS.To meet these requirements,we present a new comp...High compression ratio,high decoding performance,and progressive data transmission are the most important require-ments of vector data compression algorithms for WebGIS.To meet these requirements,we present a new compression approach.This paper begins with the generation of multiscale data by converting float coordinates to integer coordinates.It is proved that the distance between the converted point and the original point on screen is within 2 pixels,and therefore,our approach is suitable for the visualization of vector data on the client side.Integer coordinates are passed to an Integer Wavelet Transformer,and the high-frequency coefficients produced by the transformer are encoded by Canonical Huffman codes.The experimental results on river data and road data demonstrate the effectiveness of the proposed approach:compression ratio can reach 10% for river data and 20% for road data,respectively.We conclude that more attention needs be paid to correlation between curves that contain a few points.展开更多
Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. B...Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. But it cannot handle outliers and adapt to the fluctuations of actual data. An Improved SDT (ISDT) algorithm is proposed in this paper. The effectiveness and applicability of the ISDT algorithm are demonstrated by computations on both synthetic and real process data. By applying an adaptive recording limit as well as outliers-detecting rules, a higher compression ratio is achieved and outliers are identified and eliminated. The fidelity of the algorithm is also improved. It can be used both in online and batch mode, and integrated into existing software packages without change.展开更多
A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communica...A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.展开更多
The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based o...The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based on the historical data collected by the buoys with sensing capacities, a novel data compression algorithm called adaptive time piecewise constant vector quantization (ATPCVQ) is proposed to utilize the principal components. The proposed system is capable of lowering the budget of wireless communication and enhancing the lifetime of sensor nodes subject to the constrain of data precision. Furthermore, the proposed algorithm is verified by using the practical data in Qinhuangdao Port of China.展开更多
Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sens...Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.展开更多
Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which ...Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which has a fast convergence rate, a high precision, and a simple algorithm. A practical example has been used to verify its efficiency.展开更多
A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This al...A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This algorithm was tested by numerical simulation and data observed. Its results demonstrate that total errors in recovery data are less than 1% of original data in time domain,0.5% in frequency domain, when using these two methods together.Its compression ratio is greater than 3.The data compression softwares based on the algorithm have been used in the GDS-1000 portable broadband digital seismograph.展开更多
Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect c...Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect content of communication.The traditional methods are usually to use proxy technology such as tor anonymous tracking technology to achieve hiding from the communicator.However,because the establishment of proxy communication needs to consume traffic,the communication capacity will be reduced,and in recent years,the tor technology often has vulnerabilities that led to the leakage of secret information.In this paper,the covert channel model of the packet ordering is applied into the distributed system,and a distributed covert channel of the packet ordering enhancement model based on data compression(DCCPOEDC)is proposed.The data compression algorithms are used to reduce the amount of data and transmission time.The distributed system and data compression algorithms can weaken the hidden statistical probability of information.Furthermore,they can enhance the unknowability of the data and weaken the time distribution characteristics of the data packets.This paper selected a compression algorithm suitable for DCCPOEDC and analyzed DCCPOEDC from anonymity,transmission efficiency,and transmission performance.According to the analysis results,it can be seen that DCCPOEDC optimizes the covert channel of the packet ordering,which saves the transmission time and improves the concealment compared with the original covert channel.展开更多
System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to opti...System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to optimize the test data volume, decrease the testing time, and conquer the ATE memory limitation for SOC designs. This paper presents a new compression method of testing for intellectual property core-based system-on-chip. The proposed method is based on new split- data variable length (SDV) codes that are designed using the split-options along with identification bits in a string of test data. This paper analyses the reduction of test data volume, testing time, run time, size of memory required in ATE and improvement of compression ratio. Experimental results for ISCAS 85 and ISCAS 89 Benchmark circuits show that SDV codes outperform other compression methods with the best compression ratio for test data compression. The decompression architecture for SDV codes is also presented for decoding the implementations of compressed bits. The proposed scheme shows that SDV codes are accessible to any of the variations in the input test data stream.展开更多
In this paper, we analyze the complexity and entropy of different methods of data compression algorithms: LZW, Huffman, Fixed-length code (FLC), and Huffman after using Fixed-length code (HFLC). We test those algorith...In this paper, we analyze the complexity and entropy of different methods of data compression algorithms: LZW, Huffman, Fixed-length code (FLC), and Huffman after using Fixed-length code (HFLC). We test those algorithms on different files of different sizes and then conclude that: LZW is the best one in all compression scales that we tested especially on the large files, then Huffman, HFLC, and FLC, respectively. Data compression still is an important topic for research these days, and has many applications and uses needed. Therefore, we suggest continuing searching in this field and trying to combine two techniques in order to reach a best one, or use another source mapping (Hamming) like embedding a linear array into a Hypercube with other good techniques like Huffman and trying to reach good results.展开更多
The method of data compression, using orthogonal transform, is introduced so as to insure the minimal distortion of signal restoration. It, featured with transformation, can compress the data according to the needed p...The method of data compression, using orthogonal transform, is introduced so as to insure the minimal distortion of signal restoration. It, featured with transformation, can compress the data according to the needed precision. The ratio of compressed data is closely related to precision. The results show it to be favorable to different kinds of data compression.展开更多
A sixteen tree method of data compression of bilevel image is described.Thismethod has high efficiency,no information loss during compression,and easy to realize.
Multistage Vector Quantization(MSVQ) can achieve very low encoding and storage complexity in comparison to unstructured vector quantization. However, the conventional MSVQ is suboptimal with respect to the overall per...Multistage Vector Quantization(MSVQ) can achieve very low encoding and storage complexity in comparison to unstructured vector quantization. However, the conventional MSVQ is suboptimal with respect to the overall performance measure. This paper proposes a new technology to design the decoder codebook, which is different from the encoder codebook to optimise the overall performance. The performance improvement is achieved with no effect on encoding complexity, both storage and time consuming, but a modest increase in storage complexity of decoder.展开更多
This paper presents a simple but eifective algorithm to speed up the codebook search in a vector quantization scheme of SAR raw data when a minimum square error(MSE) criterion is used. A considerable reduction in the ...This paper presents a simple but eifective algorithm to speed up the codebook search in a vector quantization scheme of SAR raw data when a minimum square error(MSE) criterion is used. A considerable reduction in the number of operations is achieved.展开更多
基金supported in part by the Science and Technology Department of Sichuan Province(No.2025ZNSFSC0427,No.2024ZDZX0035)the Open Project Fund of Vehicle Measurement,Control and Safety Key Laboratory of Sichuan Province(No.QCCK2024-004)the Industrial and Educational Integration Project of Yibin(No.YB-XHU-20240001)。
文摘The accurate prediction of battery pack capacity in electric vehicles(EVs)is crucial for ensuring safety and optimizing performance.Despite extensive research on predicting cell capacity using laboratory data,predicting the capacity of onboard battery packs from field data remains challenging due to complex operating conditions and irregular EV usage in real-world settings.Most existing methods rely on extracting health feature parameters from raw data for capacity prediction of onboard battery packs,however,selecting specific parameters often results in a loss of critical information,which reduces prediction accuracy.To this end,this paper introduces a novel framework combining deep learning and data compression techniques to accurately predict battery pack capacity onboard.The proposed data compression method converts monthly EV charging data into feature maps,which preserve essential data characteristics while reducing the volume of raw data.To address missing capacity labels in field data,a capacity labeling method is proposed,which calculates monthly battery capacity by transforming the ampere-hour integration formula and applying linear regression.Subsequently,a deep learning model is proposed to build a capacity prediction model,using feature maps from historical months to predict the battery capacity of future months,thus facilitating accurate forecasts.The proposed framework,evaluated using field data from 20 EVs,achieves a mean absolute error of 0.79 Ah,a mean absolute percentage error of 0.65%,and a root mean square error of 1.02 Ah,highlighting its potential for real-world EV applications.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.
基金Supported by the National Natural Science Foundation of China(61076019,61106018)the Aeronautical Science Foundation of China(20115552031)+3 种基金the China Postdoctoral Science Foundation(20100481134)the Jiangsu Province Key Technology R&D Program(BE2010003)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010115)the Nanjing University of Aeronatics and Astronautics Initial Funding for Talented Faculty(1004-YAH10027)~~
文摘Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
文摘Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.
基金This project is supported by Provincial Key Project of Science and Technology of Zhejiang(No.2003C21031).
文摘NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on triangulated-surfaces model is put forward.Normal-vector angles between triangles are computed to find prime vertices for removal. Ring datastructure is adopted to save massive data effectively. It allows the efficient retrieval of allneighboring vertices and triangles of a given vertices. To avoid long and thin triangles, a newre-triangulation approach based on normalized minimum-vertex-distance is proposed, in which thevertex distance and interior angle of triangle are considered. Results indicate that the compressionmethod has high efficiency and can get reliable precision. The method can be applied in fastreverse engineering to acquire an optimal subset of the original massive data.
基金Supported by the National High-tech R&D Program of China(NO.2007AA120501)
文摘High compression ratio,high decoding performance,and progressive data transmission are the most important require-ments of vector data compression algorithms for WebGIS.To meet these requirements,we present a new compression approach.This paper begins with the generation of multiscale data by converting float coordinates to integer coordinates.It is proved that the distance between the converted point and the original point on screen is within 2 pixels,and therefore,our approach is suitable for the visualization of vector data on the client side.Integer coordinates are passed to an Integer Wavelet Transformer,and the high-frequency coefficients produced by the transformer are encoded by Canonical Huffman codes.The experimental results on river data and road data demonstrate the effectiveness of the proposed approach:compression ratio can reach 10% for river data and 20% for road data,respectively.We conclude that more attention needs be paid to correlation between curves that contain a few points.
基金The authors would like to acknowledge the support from Project“973”of the State Key Fundamental Research under grant G1998030415.
文摘Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. But it cannot handle outliers and adapt to the fluctuations of actual data. An Improved SDT (ISDT) algorithm is proposed in this paper. The effectiveness and applicability of the ISDT algorithm are demonstrated by computations on both synthetic and real process data. By applying an adaptive recording limit as well as outliers-detecting rules, a higher compression ratio is achieved and outliers are identified and eliminated. The fidelity of the algorithm is also improved. It can be used both in online and batch mode, and integrated into existing software packages without change.
文摘A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.
基金key project of the National Natural Science Foundation of China,Information Acquirement and Publish System of Shipping Lane in Harbor,the fund of Beijing Science and Technology Commission Network Monitoring and Application Demonstration in Food Security,the Program for New Century Excellent Talents in University,National Natural Science Foundation of ChinaProject,Fundamental Research Funds for the Central Universities
文摘The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based on the historical data collected by the buoys with sensing capacities, a novel data compression algorithm called adaptive time piecewise constant vector quantization (ATPCVQ) is proposed to utilize the principal components. The proposed system is capable of lowering the budget of wireless communication and enhancing the lifetime of sensor nodes subject to the constrain of data precision. Furthermore, the proposed algorithm is verified by using the practical data in Qinhuangdao Port of China.
文摘Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.
文摘Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which has a fast convergence rate, a high precision, and a simple algorithm. A practical example has been used to verify its efficiency.
文摘A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This algorithm was tested by numerical simulation and data observed. Its results demonstrate that total errors in recovery data are less than 1% of original data in time domain,0.5% in frequency domain, when using these two methods together.Its compression ratio is greater than 3.The data compression softwares based on the algorithm have been used in the GDS-1000 portable broadband digital seismograph.
基金This work is sponsored by the National Natural Science Foundation of China Grant No.61100008Natural Science Foundation of Heilongjiang Province of China under Grant No.LC2016024+1 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No.17KJB520044Six Talent Peaks Project in Jiangsu Province No.XYDXX-108.
文摘Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect content of communication.The traditional methods are usually to use proxy technology such as tor anonymous tracking technology to achieve hiding from the communicator.However,because the establishment of proxy communication needs to consume traffic,the communication capacity will be reduced,and in recent years,the tor technology often has vulnerabilities that led to the leakage of secret information.In this paper,the covert channel model of the packet ordering is applied into the distributed system,and a distributed covert channel of the packet ordering enhancement model based on data compression(DCCPOEDC)is proposed.The data compression algorithms are used to reduce the amount of data and transmission time.The distributed system and data compression algorithms can weaken the hidden statistical probability of information.Furthermore,they can enhance the unknowability of the data and weaken the time distribution characteristics of the data packets.This paper selected a compression algorithm suitable for DCCPOEDC and analyzed DCCPOEDC from anonymity,transmission efficiency,and transmission performance.According to the analysis results,it can be seen that DCCPOEDC optimizes the covert channel of the packet ordering,which saves the transmission time and improves the concealment compared with the original covert channel.
文摘System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to optimize the test data volume, decrease the testing time, and conquer the ATE memory limitation for SOC designs. This paper presents a new compression method of testing for intellectual property core-based system-on-chip. The proposed method is based on new split- data variable length (SDV) codes that are designed using the split-options along with identification bits in a string of test data. This paper analyses the reduction of test data volume, testing time, run time, size of memory required in ATE and improvement of compression ratio. Experimental results for ISCAS 85 and ISCAS 89 Benchmark circuits show that SDV codes outperform other compression methods with the best compression ratio for test data compression. The decompression architecture for SDV codes is also presented for decoding the implementations of compressed bits. The proposed scheme shows that SDV codes are accessible to any of the variations in the input test data stream.
文摘In this paper, we analyze the complexity and entropy of different methods of data compression algorithms: LZW, Huffman, Fixed-length code (FLC), and Huffman after using Fixed-length code (HFLC). We test those algorithms on different files of different sizes and then conclude that: LZW is the best one in all compression scales that we tested especially on the large files, then Huffman, HFLC, and FLC, respectively. Data compression still is an important topic for research these days, and has many applications and uses needed. Therefore, we suggest continuing searching in this field and trying to combine two techniques in order to reach a best one, or use another source mapping (Hamming) like embedding a linear array into a Hypercube with other good techniques like Huffman and trying to reach good results.
文摘The method of data compression, using orthogonal transform, is introduced so as to insure the minimal distortion of signal restoration. It, featured with transformation, can compress the data according to the needed precision. The ratio of compressed data is closely related to precision. The results show it to be favorable to different kinds of data compression.
文摘A sixteen tree method of data compression of bilevel image is described.Thismethod has high efficiency,no information loss during compression,and easy to realize.
文摘Multistage Vector Quantization(MSVQ) can achieve very low encoding and storage complexity in comparison to unstructured vector quantization. However, the conventional MSVQ is suboptimal with respect to the overall performance measure. This paper proposes a new technology to design the decoder codebook, which is different from the encoder codebook to optimise the overall performance. The performance improvement is achieved with no effect on encoding complexity, both storage and time consuming, but a modest increase in storage complexity of decoder.
文摘This paper presents a simple but eifective algorithm to speed up the codebook search in a vector quantization scheme of SAR raw data when a minimum square error(MSE) criterion is used. A considerable reduction in the number of operations is achieved.