期刊文献+
共找到1,017篇文章
< 1 2 51 >
每页显示 20 50 100
Using Data Mining to Find Patterns in Ant Colony Algorithm Solutions to the Travelling Salesman Problem
1
作者 阎世梁 王银玲 《现代电子技术》 2007年第5期117-119,共3页
Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by ... Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation. 展开更多
关键词 数据挖掘 数据管理系统 数据库 数据分析
在线阅读 下载PDF
Research on Data Routing Model Based on Ant Colony Algorithms 被引量:1
2
作者 龚跃 吴航 +2 位作者 鲍杰 王君军 张艳秋 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第4期269-272,共4页
Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating mod... Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating model of pheromone could adjust the pheromone concentration on the optimal path according to path load dynamically to make the system keep load balance.The simulation results show that the improved model has a higher performance on convergence and load balance. 展开更多
关键词 computer software data transmission ant colony algorithm routing model
在线阅读 下载PDF
Scaling up the DBSCAN Algorithm for Clustering Large Spatial Databases Based on Sampling Technique 被引量:9
3
作者 Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China 2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 3.College of Remote Sensin 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期467-473,共7页
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni... Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases. 展开更多
关键词 spatial databases data mining clustering sampling DBSCAN algorithm
在线阅读 下载PDF
A new clustering algorithm for large datasets 被引量:1
4
作者 李清峰 彭文峰 《Journal of Central South University》 SCIE EI CAS 2011年第3期823-829,共7页
The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between c... The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between clustering aggregation and the problem of correlation clustering.The best deterministic approximation algorithm was provided for the variation of the correlation of clustering problem,and showed how sampling can be used to scale the algorithms for large datasets.An extensive empirical evaluation was given for the usefulness of the problem and the solutions.The results show that this method achieves more than 50% reduction in the running time without sacrificing the quality of the clustering. 展开更多
关键词 data mining Circle algorithm clustering categorical data clustering aggregation
在线阅读 下载PDF
A new algorithm based on metaheuristics for data clustering
5
作者 Tsutomu SHOHDOHJI Fumihiko YANO Yoshiaki TOYODA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第12期921-926,共6页
This paper presents a new algorithm for clustering a large amount of data.We improved the ant colony clustering algorithm that uses an ant’s swarm intelligence,and tried to overcome the weakness of the classical clus... This paper presents a new algorithm for clustering a large amount of data.We improved the ant colony clustering algorithm that uses an ant’s swarm intelligence,and tried to overcome the weakness of the classical cluster analysis methods.In our proposed algorithm,improvements in the efficiency of an agent operation were achieved,and a new function "cluster condensation" was added.Our proposed algorithm is a processing method by which a cluster size is reduced by uniting similar objects and incorporating them into the cluster condensation.Compared with classical cluster analysis methods,the number of steps required to complete the clustering can be suppressed to 1% or less by performing this procedure,and the dispersion of the result can also be reduced.Moreover,our clustering algorithm has the advantage of being possible even in a small-field cluster condensation.In addition,the number of objects that exist in the field decreases because the cluster condenses;therefore,it becomes possible to add an object to a space that has become empty.In other words,first,the majority of data is put on standby.They are then clustered,gradually adding parts of the standby data to the clustering data.The method can be adopted for a large amount of data.Numerical experiments confirmed that our proposed algorithm can theoretically applied to an unrestricted volume of data. 展开更多
关键词 Metaheuristics ant colony clustering data clustering Swarm intelligence
原文传递
Linear manifold clustering for high dimensional data based on line manifold searching and fusing 被引量:1
6
作者 黎刚果 王正志 +2 位作者 王晓敏 倪青山 强波 《Journal of Central South University》 SCIE EI CAS 2010年第5期1058-1069,共12页
High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this prob... High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data. 展开更多
关键词 linear manifold subspace clustering line manifold data mining data fusing clustering algorithm
在线阅读 下载PDF
IWD-Miner: A Novel Metaheuristic Algorithm for Medical Data Classification
7
作者 Sarab AlMuhaideb Reem BinGhannam +3 位作者 Nourah Alhelal Shatha Alduheshi Fatimah Alkhamees Raghad Alsuhaibani 《Computers, Materials & Continua》 SCIE EI 2021年第2期1329-1346,共18页
Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to ... Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to predict the associated diagnosis or prognosis.To gain experts’trust,the prediction and the reasoning behind it are equally important.Accordingly,we confine our research to learn rule-based models because they are transparent and comprehensible.One approach to MDC involves the use of metaheuristic(MH)algorithms.Here we report on the development and testing of a novel MH algorithm:IWD-Miner.This algorithm can be viewed as a fusion of Intelligent Water Drops(IWDs)and AntMiner+.It was subjected to a four-stage sensitivity analysis to optimize its performance.For this purpose,21 publicly available medical datasets were used from the Machine Learning Repository at the University of California Irvine.Interestingly,there were only limited differences in performance between IWDMiner variants which is suggestive of its robustness.Finally,using the same 21 datasets,we compared the performance of the optimized IWD-Miner against two extant algorithms,AntMiner+and J48.The experiments showed that both rival algorithms are considered comparable in the effectiveness to IWD-Miner,as confirmed by the Wilcoxon nonparametric statistical test.Results suggest that IWD-Miner is more efficient than AntMiner+as measured by the average number of fitness evaluations to a solution(1,386,621.30 vs.2,827,283.88 fitness evaluations,respectively).J48 exhibited higher accuracy on average than IWD-Miner(79.58 vs.73.65,respectively)but produced larger models(32.82 leaves vs.8.38 terms,respectively). 展开更多
关键词 ant colony optimization antMiner+ IWDs IWD-Miner J48 medical data classification metaheuristic algorithms swarm intelligence
在线阅读 下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
8
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 Multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
在线阅读 下载PDF
Study on the Grouping of Patients with Chronic Infectious Diseases Based on Data Mining
9
作者 Min Li 《Journal of Biosciences and Medicines》 2019年第11期119-135,共17页
Objective: According to RFM model theory of customer relationship management, data mining technology was used to group the chronic infectious disease patients to explore the effect of customer segmentation on the mana... Objective: According to RFM model theory of customer relationship management, data mining technology was used to group the chronic infectious disease patients to explore the effect of customer segmentation on the management of patients with different characteristics. Methods: 170,246 outpatient data was extracted from the hospital management information system (HIS) during January 2016 to July 2016, 43,448 data was formed after the data cleaning. K-Means clustering algorithm was used to classify patients with chronic infectious diseases, and then C5.0 decision tree algorithm was used to predict the situation of patients with chronic infectious diseases. Results: Male patients accounted for 58.7%, patients living in Shanghai accounted for 85.6%. The average age of patients is 45.88 years old, the high incidence age is 25 to 65 years old. Patients was gathered into three categories: 1) Clusters 1—Important patients (4786 people, 11.72%, R = 2.89, F = 11.72, M = 84,302.95);2) Clustering 2—Major patients (23,103, 53.2%, R = 5.22, F = 3.45, M = 9146.39);3) Cluster 3—Potential patients (15,559 people, 35.8%, R = 19.77, F = 1.55, M = 1739.09). C5.0 decision tree algorithm was used to predict the treatment situation of patients with chronic infectious diseases, the final treatment time (weeks) is an important predictor, the accuracy rate is 99.94% verified by the confusion model. Conclusion: Medical institutions should strengthen the adherence education for patients with chronic infectious diseases, establish the chronic infectious diseases and customer relationship management database, take the initiative to help them improve treatment adherence. Chinese governments at all levels should speed up the construction of hospital information, establish the chronic infectious disease database, strengthen the blocking of mother-to-child transmission, to effectively curb chronic infectious diseases, reduce disease burden and mortality. 展开更多
关键词 data mining K-Means clustering algorithm C5.0 Decision Tree algorithm Customer Relationship Management PATIENTS with CHRONIC INFECTIOUS Disease
暂未订购
Architecture of Integrated Data Clustering Machine
10
作者 ARIF Iqbal 《Computer Aided Drafting,Design and Manufacturing》 2009年第2期43-48,共6页
Data clustering is a significant information retrieval technique in today's data intensive society. Over the last few decades a vast variety of huge number of data clustering algorithms have been designed and impleme... Data clustering is a significant information retrieval technique in today's data intensive society. Over the last few decades a vast variety of huge number of data clustering algorithms have been designed and implemented for all most all data types. The quality of results of cluster analysis mainly depends on the clustering algorithm used in the analysis. Architecture of a versatile, less user dependent, dynamic and scalable data clustering machine is presented. The machine selects for analysis, the best available data clustering algorithm on the basis of the credentials of the data and previously used domain knowledge. The domain knowledge is updated on completion of each session of data analysis. 展开更多
关键词 data mining data clustering data clustering algorithms ARCHITECTURE FRAMEWORK
在线阅读 下载PDF
MR-CLOPE: A Map Reduce based transactional clustering algorithm for DNS query log analysis 被引量:2
11
作者 李晔锋 乐嘉锦 +2 位作者 王梅 张滨 刘良旭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3485-3494,共10页
DNS(domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the alg... DNS(domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the algorithm is inefficient when processing large scale data. The MR-CLOPE algorithm is proposed, which is an extension and improvement on CLOPE based on Map Reduce. Different from the previous parallel clustering method, a two-stage Map Reduce implementation framework is proposed. Each of the stage is implemented by one kind Map Reduce task. In the first stage, the DNS query logs are divided into multiple splits and the CLOPE algorithm is executed on each split. The second stage usually tends to iterate many times to merge the small clusters into bigger satisfactory ones. In these two stages, a novel partition process is designed to randomly spread out original sub clusters, which will be moved and merged in the map phrase of the second phase according to the defined merge criteria. In such way, the advantage of the original CLOPE algorithm is kept and its disadvantages are dealt with in the proposed framework to achieve more excellent clustering performance. The experiment results show that MR-CLOPE is not only faster but also has better clustering quality on DNS query logs compared with CLOPE. 展开更多
关键词 DNS data mining MR-CLOPE algorithm transactional clustering algorithm Map Reduce framework
在线阅读 下载PDF
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
12
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFCM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
基于ISODATA的电力负荷曲线分类 被引量:9
13
作者 李仲恒 刘蓉晖 《上海电力学院学报》 CAS 2019年第4期327-332,共6页
迭代自组织数据分析算法(ISODATA)是一种基于统计模式识别的非监督学习动态聚类算法。针对当前各算法初始聚类数取值困难、容易陷入局部最优等问题,介绍了ISODATA的原理和实现步骤,并将此算法应用于负荷分类中。在MATLAB中结合具体日负... 迭代自组织数据分析算法(ISODATA)是一种基于统计模式识别的非监督学习动态聚类算法。针对当前各算法初始聚类数取值困难、容易陷入局部最优等问题,介绍了ISODATA的原理和实现步骤,并将此算法应用于负荷分类中。在MATLAB中结合具体日负荷曲线样本进行聚类分析,结果证明聚类效果较好。将ISODATA与各种传统聚类方法进行了对比实验,比较各种算法的聚类效果、预定聚类数目对算法结果的影响,以及初始聚类中心的选择对结果的影响。对比结果证明,此方法适用于负荷分类的研究。 展开更多
关键词 迭代自组织数据分析算法 聚类 日负荷曲线 曲线识别 大数据 数据挖掘
在线阅读 下载PDF
Distance function selection in several clustering algorithms
14
作者 LUYu 《Journal of Chongqing University》 CAS 2004年第1期47-50,共4页
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical... Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts. 展开更多
关键词 distance function clustering algorithms K-MEANS DENDROGRAM data mining
在线阅读 下载PDF
Using Optimized Distributional Parameters as Inputs in a Sequential Unsupervised and Supervised Modeling of Sunspots Data
15
作者 K. Mwitondi J. Bugrien K. Wang 《Journal of Software Engineering and Applications》 2013年第7期34-41,共8页
Detecting naturally arising structures in data is central to knowledge extraction from data. In most applications, the main challenge is in the choice of the appropriate model for exploring the data features. The choi... Detecting naturally arising structures in data is central to knowledge extraction from data. In most applications, the main challenge is in the choice of the appropriate model for exploring the data features. The choice is generally poorly understood and any tentative choice may be too restrictive. Growing volumes of data, disparate data sources and modelling techniques entail the need for model optimization via adaptability rather than comparability. We propose a novel two-stage algorithm to modelling continuous data consisting of an unsupervised stage whereby the algorithm searches through the data for optimal parameter values and a supervised stage that adapts the parameters for predictive modelling. The method is implemented on the sunspots data with inherently Gaussian distributional properties and assumed bi-modality. Optimal values separating high from lows cycles are obtained via multiple simulations. Early patterns for each recorded cycle reveal that the first 3 years provide a sufficient basis for predicting the peak. Multiple Support Vector Machine runs using repeatedly improved data parameters show that the approach yields greater accuracy and reliability than conventional approaches and provides a good basis for model selection. Model reliability is established via multiple simulations of this type. 展开更多
关键词 clustering data mining Density Estimation EM algorithm SUNSPOTS Supervised MODELLING Support Vector Machines UNSUPERVISED MODELLING
暂未订购
A New Method for Clustering Based on Development of Imperialist Competitive Algorithm
16
作者 Mohammad Reza Dehghani Zadeh Mohammad Fathian Mohammad Reza Gholamian 《China Communications》 SCIE CSCD 2014年第12期54-61,共8页
Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some m... Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm. 展开更多
关键词 data mining homogeneous cluster imperialist competitive algorithm
在线阅读 下载PDF
A Clustering Method Based on Brain Storm Optimization Algorithm
17
作者 Tianyu Wang Yu Xue +3 位作者 Yan Zhao Yuxiang Wang Yan Zhang Yuxiang He 《Journal of Information Hiding and Privacy Protection》 2020年第3期135-142,共8页
In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)... In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)and DBSCAN.However,the traditional clustering methods are easily trapped into local optimum.Thus,many evolutionary-based clustering methods have been investigated.Considering the effectiveness of brain storm optimization(BSO)in increasing the diversity while the diversity optimization is performed,in this paper,we propose a new clustering model based on BSO to use the global ability of BSO.In our experiment,we apply the novel binary model to solve the problem.During the period of processing data,BSO was mainly utilized for iteration.Also,in the process of K-means,we set the more appropriate parameters selected to match it greatly.Four datasets were used in our experiment.In our model,BSO was first introduced in solving the clustering problem.With the algorithm running on each dataset repeatedly,our experimental results have obtained good convergence and diversity.In addition,by comparing the results with other clustering models,the BSO clustering model also guarantees high accuracy.Therefore,from many aspects,the simulation results show that the model of this paper has good performance. 展开更多
关键词 clustering method brain storm optimization algorithm(BSO) evolutionary clustering algorithm data mining
在线阅读 下载PDF
基于改进Ant-miner算法的分类规则挖掘 被引量:3
18
作者 肖菁 梁燕辉 《计算机工程》 CAS CSCD 2012年第17期162-165,共4页
为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点... 为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点变异,由此扩大规则的搜索空间,提高规则的预测准确度。在Ant-miner算法的信息素更新公式中加入挥发系数,使其更接近现实蚂蚁的觅食行为,防止算法过早收敛。基于UCI标准数据的实验结果表明,该算法相比传统Ant-miner算法具有更高的预测准确度。 展开更多
关键词 ant-miner算法 分类规则挖掘 数据挖掘 蚁群优化 规则修剪策略
在线阅读 下载PDF
Ant-Miner算法研究和性能优化
19
作者 邵晓艳 王艳 +1 位作者 李玲玲 胡欣茹 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期154-157,182,共5页
首先阐述了Ant-Miner算法的实现原理,然后从不同角度对Ant-Miner算法进行分析,并针对Ant-Miner算法的不足之处提出了相应的改进和优化方案,最后通过实验证明优化后的算法能达到更好的效果.
关键词 数据挖掘 蚁群算法 分类规则
在线阅读 下载PDF
Coupled Cross-correlation Neural Network Algorithm for Principal Singular Triplet Extraction of a Cross-covariance Matrix 被引量:2
20
作者 Xiaowei Feng Xiangyu Kong Hongguang Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第2期149-156,共8页
This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a nov... This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a novel information criterion (NIC), in which the stationary points are singular triplet of the crosscorrelation matrix. Then, based on Newton's method, we obtain a coupled system of ordinary differential equations (ODEs) from the NIC. The ODEs have the same equilibria as the gradient of NIC, however, only the first PST of the system is stable (which is also the desired solution), and all others are (unstable) saddle points. Based on the system, we finally obtain a fast and stable algorithm for PST extraction. The proposed algorithm can solve the speed-stability problem that plagues most noncoupled learning rules. Moreover, the proposed algorithm can also be used to extract multiple PSTs effectively by using sequential method. © 2014 Chinese Association of Automation. 展开更多
关键词 clustering algorithms Covariance matrix data mining Differential equations EXTRACTION Learning algorithms Negative impedance converters Newton Raphson method Ordinary differential equations Singular value decomposition
在线阅读 下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部