期刊文献+
共找到1,063篇文章
< 1 2 54 >
每页显示 20 50 100
Data cleaning method for the process of acid production with flue gas based on improved random forest 被引量:3
1
作者 Xiaoli Li Minghua Liu +2 位作者 Kang Wang Zhiqiang Liu Guihai Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期72-84,共13页
Acid production with flue gas is a complex nonlinear process with multiple variables and strong coupling.The operation data is an important basis for state monitoring,optimal control,and fault diagnosis.However,the op... Acid production with flue gas is a complex nonlinear process with multiple variables and strong coupling.The operation data is an important basis for state monitoring,optimal control,and fault diagnosis.However,the operating environment of acid production with flue gas is complex and there is much equipment.The data obtained by the detection equipment is seriously polluted and prone to abnormal phenomena such as data loss and outliers.Therefore,to solve the problem of abnormal data in the process of acid production with flue gas,a data cleaning method based on improved random forest is proposed.Firstly,an outlier data recognition model based on isolation forest is designed to identify and eliminate the outliers in the dataset.Secondly,an improved random forest regression model is established.Genetic algorithm is used to optimize the hyperparameters of the random forest regression model.Then the optimal parameter combination is found in the search space and the trend of data is predicted.Finally,the improved random forest data cleaning method is used to compensate for the missing data after eliminating abnormal data and the data cleaning is realized.Results show that the proposed method can accurately eliminate and compensate for the abnormal data in the process of acid production with flue gas.The method improves the accuracy of compensation for missing data.With the data after cleaning,a more accurate model can be established,which is significant to the subsequent temperature control.The conversion rate of SO_(2) can be further improved,thereby improving the yield of sulfuric acid and economic benefits. 展开更多
关键词 Acid production data cleaning Isolation forest Random forest data compensation
在线阅读 下载PDF
A Review of Data Cleaning Methods for Web Information System 被引量:1
2
作者 Jinlin Wang Xing Wang +2 位作者 Yuchen Yang Hongli Zhang Binxing Fang 《Computers, Materials & Continua》 SCIE EI 2020年第3期1053-1075,共23页
Web information system(WIS)is frequently-used and indispensable in daily social life.WIS provides information services in many scenarios,such as electronic commerce,communities,and edutainment.Data cleaning plays an e... Web information system(WIS)is frequently-used and indispensable in daily social life.WIS provides information services in many scenarios,such as electronic commerce,communities,and edutainment.Data cleaning plays an essential role in various WIS scenarios to improve the quality of data service.In this paper,we present a review of the state-of-the-art methods for data cleaning in WIS.According to the characteristics of data cleaning,we extract the critical elements of WIS,such as interactive objects,application scenarios,and core technology,to classify the existing works.Then,after elaborating and analyzing each category,we summarize the descriptions and challenges of data cleaning methods with sub-elements such as data&user interaction,data quality rule,model,crowdsourcing,and privacy preservation.Finally,we analyze various types of problems and provide suggestions for future research on data cleaning in WIS from the technology and interactive perspective. 展开更多
关键词 data cleaning web information system data quality rule crowdsourcing privacy preservation
在线阅读 下载PDF
Data Cleaning Based on Stacked Denoising Autoencoders and Multi-Sensor Collaborations 被引量:1
3
作者 Xiangmao Chang Yuan Qiu +1 位作者 Shangting Su Deliang Yang 《Computers, Materials & Continua》 SCIE EI 2020年第5期691-703,共13页
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop... Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach. 展开更多
关键词 data cleaning wireless sensor networks stacked denoising autoencoders multi-sensor collaborations
在线阅读 下载PDF
An Improvement of Data Cleaning Method for Grain Big Data Processing Using Task Merging 被引量:1
4
作者 Feiyu Lian Maixia Fu Xingang Ju 《Journal of Computer and Communications》 2020年第3期1-19,共19页
Data quality has exerted important influence over the application of grain big data, so data cleaning is a necessary and important work. In MapReduce frame, parallel technique is often used to execute data cleaning in... Data quality has exerted important influence over the application of grain big data, so data cleaning is a necessary and important work. In MapReduce frame, parallel technique is often used to execute data cleaning in high scalability mode, but due to the lack of effective design, there are amounts of computing redundancy in the process of data cleaning, which results in lower performance. In this research, we found that some tasks often are carried out multiple times on same input files, or require same operation results in the process of data cleaning. For this problem, we proposed a new optimization technique that is based on task merge. By merging simple or redundancy computations on same input files, the number of the loop computation in MapReduce can be reduced greatly. The experiment shows, by this means, the overall system runtime is significantly reduced, which proves that the process of data cleaning is optimized. In this paper, we optimized several modules of data cleaning such as entity identification, inconsistent data restoration, and missing value filling. Experimental results show that the proposed method in this paper can increase efficiency for grain big data cleaning. 展开更多
关键词 GRAIN BIG data data cleaning TASK MERGING Hadoop MAPREDUCE
在线阅读 下载PDF
A Rule Management System for Knowledge Based Data Cleaning
5
作者 Louardi BRADJI Mahmoud BOUFAIDA 《Intelligent Information Management》 2011年第6期230-239,共10页
In this paper, we propose a rule management system for data cleaning that is based on knowledge. This system combines features of both rule based systems and rule based data cleaning frameworks. The important advantag... In this paper, we propose a rule management system for data cleaning that is based on knowledge. This system combines features of both rule based systems and rule based data cleaning frameworks. The important advantages of our system are threefold. First, it aims at proposing a strong and unified rule form based on first order structure that permits the representation and management of all the types of rules and their quality via some characteristics. Second, it leads to increase the quality of rules which conditions the quality of data cleaning. Third, it uses an appropriate knowledge acquisition process, which is the weakest task in the current rule and knowledge based systems. As several research works have shown that data cleaning is rather driven by domain knowledge than by data, we have identified and analyzed the properties that distinguish knowledge and rules from data for better determining the most components of the proposed system. In order to illustrate our system, we also present a first experiment with a case study at health sector where we demonstrate how the system is useful for the improvement of data quality. The autonomy, extensibility and platform-independency of the proposed rule management system facilitate its incorporation in any system that is interested in data quality management. 展开更多
关键词 RULE data Quality data cleanING KNOWLEDGE RULE Management SYSTEM RULE Based SYSTEM Structure
暂未订购
Big Data Cleaning Based on Improved CLOF and Random Forest for Distribution Networks
6
作者 Jie Liu Yijia Cao +2 位作者 Yong Li Yixiu Guo Wei Deng 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第6期2528-2538,共11页
In order to improve the data quality,the big data cleaning method for distribution networks is studied in this paper.First,the Local Outlier Factor(LOF)algorithm based on DBSCAN clustering is used to detect outliers.H... In order to improve the data quality,the big data cleaning method for distribution networks is studied in this paper.First,the Local Outlier Factor(LOF)algorithm based on DBSCAN clustering is used to detect outliers.However,due to the difficulty in determining the LOF threshold,a method of dynamically calculating the threshold based on the transformer districts and time is proposed.In addition,the LOF algorithm combines the statistical distribution method to reduce the misjudgment rate.Aiming at the diversity and complexity of data missing forms in power big data,this paper has improved the Random Forest imputation algorithm,which can be applied to various forms of missing data,especially the blocked missing data and even some completely missing horizontal or vertical data.The data in this paper are from real data of 44 transformer districts of a certain 10 kV line in a distribution network.Experimental results show that outlier detection is accurate and suitable for any shape and multidimensional power big data.The improved Random Forest imputation algorithm is suitable for all missing forms,with higher imputation accuracy and better model stability.By comparing the network loss prediction between the data using this data cleaning method and the data removing outliers and missing values,it can be found that the accuracy of network loss prediction has improved by nearly 4%using the data cleaning method identified in this paper.Additionally,as the proportion of bad data increased,the difference between the prediction accuracy of cleaned data and that of uncleaned data is more significant. 展开更多
关键词 data cleaning DBSCAN LOF missing data imputation outliers detection Random Forest
原文传递
A method for cleaning wind power anomaly data by combining image processing with community detection algorithms
7
作者 Qiaoling Yang Kai Chen +2 位作者 Jianzhang Man Jiaheng Duan Zuoqi Jin 《Global Energy Interconnection》 EI CSCD 2024年第3期293-312,共20页
Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of ... Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting. 展开更多
关键词 Wind turbine power curve Abnormal data cleaning Community detection Louvain algorithm Mathematical morphology operation
在线阅读 下载PDF
Cleaning of Multi-Source Uncertain Time Series Data Based on PageRank
8
作者 高嘉伟 孙纪舟 《Journal of Donghua University(English Edition)》 CAS 2023年第6期695-700,共6页
There are errors in multi-source uncertain time series data.Truth discovery methods for time series data are effective in finding more accurate values,but some have limitations in their usability.To tackle this challe... There are errors in multi-source uncertain time series data.Truth discovery methods for time series data are effective in finding more accurate values,but some have limitations in their usability.To tackle this challenge,we propose a new and convenient truth discovery method to handle time series data.A more accurate sample is closer to the truth and,consequently,to other accurate samples.Because the mutual-confirm relationship between sensors is very similar to the mutual-quote relationship between web pages,we evaluate sensor reliability based on PageRank and then estimate the truth by sensor reliability.Therefore,this method does not rely on smoothness assumptions or prior knowledge of the data.Finally,we validate the effectiveness and efficiency of the proposed method on real-world and synthetic data sets,respectively. 展开更多
关键词 big data data cleaning time series truth discovery PAGERANK
在线阅读 下载PDF
IoT data cleaning techniques: A survey
9
作者 Xiaoou Ding Hongzhi Wang +3 位作者 Genglong Li Haoxuan Li Yingze Li Yida Liu 《Intelligent and Converged Networks》 EI 2022年第4期325-339,共15页
Data cleaning is considered as an effective approach of improving data quality in order to help practitioners and researchers be devoted to downstream analysis and decision-making without worrying about data trustwort... Data cleaning is considered as an effective approach of improving data quality in order to help practitioners and researchers be devoted to downstream analysis and decision-making without worrying about data trustworthiness.This paper provides a systematic summary of the two main stages of data cleaning for Internet of Things(IoT)data with time series characteristics,including error data detection and data repairing.In respect to error data detection techniques,it categorizes an overview of quantitative data error detection methods for detecting single-point errors,continuous errors,and multidimensional time series data errors and qualitative data error detection methods for detecting rule-violating errors.Besides,it provides a detailed description of error data repairing techniques,involving statistics-based repairing,rule-based repairing,and human-involved repairing.We review the strengths and the limitations of the current data cleaning techniques under IoT data applications and conclude with an outlook on the future of IoT data cleaning. 展开更多
关键词 Internet of Things(IoT) data quality data cleaning error detection data repairing
原文传递
Data Cleaning About Student Information Based on Massive Open Online Course System
10
作者 Shengjun Yin Yaling Yi Hongzhi Wang 《国际计算机前沿大会会议论文集》 2020年第1期33-43,共11页
Recently,Massive Open Online Courses(MOOCs)is a major way of online learning for millions of people around the world,which generates a large amount of data in the meantime.However,due to errors produced from collectin... Recently,Massive Open Online Courses(MOOCs)is a major way of online learning for millions of people around the world,which generates a large amount of data in the meantime.However,due to errors produced from collecting,system,and so on,these data have various inconsistencies and missing values.In order to support accurate analysis,this paper studies the data cleaning technology for online open curriculum system,including missing value-time filling for time series,and rulebased input error correction.The data cleaning algorithm designed in this paper is divided into six parts:pre-processing,missing data processing,format and content error processing,logical error processing,irrelevant data processing and correlation analysis.This paper designs and implements missing-value-filling algorithm based on time series in the missing data processing part.According to the large number of descriptive variables existing in the format and content error processing module,it proposed one-based and separability-based criteria Hot+J3+PCA.The online course data cleaning algorithm was analyzed in detail on algorithm design,implementation and testing.After a lot of rigorous testing,the function of each module performs normally,and the cleaning performance of the algorithm is of expectation. 展开更多
关键词 MOOC data cleaning Time series Intermittent missing Dimension reduction
原文传递
基于滑动窗口和斜率特征的振弦式传感器数据清洗方法 被引量:1
11
作者 陈建勋 陈辉 +3 位作者 罗彦斌 罗华 陈浩 李昌鹏 《中国公路学报》 北大核心 2025年第5期134-145,共12页
隧道结构健康监测自诊断和状态评估都是建立在数据分析的基础上,但传感器所获取的数据不可避免地会出现诸多异常数据。这些异常数据不仅包含非结构性因素引起的干扰信息,还包括结构性因素引起的损伤信息。如何提取淹没在异常数据中的有... 隧道结构健康监测自诊断和状态评估都是建立在数据分析的基础上,但传感器所获取的数据不可避免地会出现诸多异常数据。这些异常数据不仅包含非结构性因素引起的干扰信息,还包括结构性因素引起的损伤信息。如何提取淹没在异常数据中的有用损伤信息,并剔除无用的干扰信息成为了重点。根据异常数据变化率的不稳定、不连续性,提出一种滑动斜率异常检测和数据重构法。首先,采用滑动窗口对数据进行动态分段处理,再对各窗口内数据进行最小二乘线性拟合,得到斜率和截距向量;其次,根据斜率的方差和拟合优度设置阈值,检测并剔除离散程度较大、拟合程度较差的斜率和截距值;最后,利用回归计算和中位数法进行数据重构。基于钢筋混凝土试件损伤试验数据和现场监测的异常数据,对所提方法与传统3σ法、滑动中值滤波、小波变换和经验模态分解法的应用效果进行对比。结果表明:所提方法能够有效清洗其他方法难以处理的增益和偏移数据,能有效识别和清洗数据的异常趋势,同时不破坏原有的结构性损伤数据,保证了监测数据的质量,能够满足实际应用的需要。 展开更多
关键词 隧道工程 时间序列数据 数据清洗 滑动斜率检测法 振弦式传感器 滑动窗口 损伤试验
原文传递
环境健康风险评估数据清洗框架研究 被引量:1
12
作者 刘悦 郝舒欣 +1 位作者 刘婕 徐东群 《环境卫生学杂志》 2025年第10期878-884,907,共8页
目的提出并规范环境健康风险评估数据清洗的工作流程和操作步骤、选择合适的处理方法,提高数据清洗工作的效率。方法通过检索国内外文献梳理总结环境健康数据的清洗方法和应用情况,结合风险评估对数据的要求,根据实践应用经验提出环境... 目的提出并规范环境健康风险评估数据清洗的工作流程和操作步骤、选择合适的处理方法,提高数据清洗工作的效率。方法通过检索国内外文献梳理总结环境健康数据的清洗方法和应用情况,结合风险评估对数据的要求,根据实践应用经验提出环境健康风险评估数据清洗框架。结果建立了环境健康风险评估数据清洗框架,包括工作准备、数据探索、数据检测、数据清洗和数据终库。结论本研究提出的环境健康风险评估数据清洗框架,规范了清洗流程和操作步骤,为从事环境健康风险评估的工作人员提供参考和技术支撑。 展开更多
关键词 环境健康 风险评估 数据检测 数据清洗 数据清洗框架
暂未订购
基于XGBoost的丢头地震记录自动识别模型
13
作者 李山有 谢博楠 +3 位作者 卢建旗 谢志南 李伟 陈欣 《应用基础与工程科学学报》 北大核心 2025年第2期338-348,共11页
约1/2以上的强震动观测数据面临信号丢头的问题.如何在海量记录中自动剔除丢头的地震记录是地震P波参数相关算法研究的重要需求.基于极限梯度提升树(XGBoost)方法,建立了丢头地震动记录的自动识别模型.采用日本K-NET台网记录的970次地震... 约1/2以上的强震动观测数据面临信号丢头的问题.如何在海量记录中自动剔除丢头的地震记录是地震P波参数相关算法研究的重要需求.基于极限梯度提升树(XGBoost)方法,建立了丢头地震动记录的自动识别模型.采用日本K-NET台网记录的970次地震的83825条竖向分量加速度记录作为XGBoost模型的训练/测试数据集.该模型对正样本(未丢头记录)的识别成功率为92.07%,对负样本(丢头记录)的识别成功率为98.93%.在相同测试数据集下与基于Fisher线性分辨的传统模型相比,XGBoost模型不仅极大地提高了正样本的识别成功率,同时也保证了负样本较高的识别成功率.结果表明,该模型对(未)丢头地震记录有很高的识别精度,当需要从海量强震动观测数据中自动提取P波参数时,可以运用该模型自动剔除丢头地震记录,以避免丢头地震记录对数据质量造成污染. 展开更多
关键词 海量地震数据 丢头地震记录 XGBoost 集成学习 地震P波 数据清洗
原文传递
基于飞行轨迹预测的数据异常检测与清洗方法
14
作者 赵元棣 胡译心 +1 位作者 汤盛家 李桃 《科学技术与工程》 北大核心 2025年第26期11398-11406,共9页
为了有效检测和清洗飞行轨迹异常数据,研究了在数据采集过程中容易出现的重复、缺失、错误等问题,基于机器学习提出了一种准确性和鲁棒性较高的数据异常检测与清洗方法。首先,结合线性插值和最大最小值算法对数据进行去重、插值和归一... 为了有效检测和清洗飞行轨迹异常数据,研究了在数据采集过程中容易出现的重复、缺失、错误等问题,基于机器学习提出了一种准确性和鲁棒性较高的数据异常检测与清洗方法。首先,结合线性插值和最大最小值算法对数据进行去重、插值和归一化处理;其次,基于GRU构建飞行轨迹预测模型;最后,利用SVDD模型对飞行轨迹数据进行异常检测,当实际数据与预测数据偏差较大时使用预测数据进行替换,达到清洗效果。结果表明:相较于其他LSTM算法模型,本文方法得到清洗后的飞行轨迹数据具有更高的准确性,F_(1)分数平均能达到0.932,较好地逼近原始飞行轨迹数据;通过检验位置偏移(干扰)、高度偏差(篡改)、航路交叉(替换)3种攻击方法,证明该方法具有较高的鲁棒性。本文方法能够准确预测飞行轨迹,并对异常数据进行有效检测与清洗,提高数据质量,有助于准确分析航班运行情况。 展开更多
关键词 数据清洗 飞行轨迹预测 机器学习 循环门单元算法
在线阅读 下载PDF
基于边缘计算的企业海量云端动态数据清洗方法研究
15
作者 徐晓冰 李奇越 +3 位作者 陈艺 赵龙 秦琪 汪玉 《自动化技术与应用》 2025年第1期71-75,共5页
原有清洗方法对缺失数据的筛选标准过于模糊,无法完成未来企业的数据预测。因此,提出基于边缘计算的企业海量云端动态数据清洗方法。在数据采集模块,对动态数据进行预处理。基于边缘计算构建数据筛选模型,将企业数据进行分类。计算企业... 原有清洗方法对缺失数据的筛选标准过于模糊,无法完成未来企业的数据预测。因此,提出基于边缘计算的企业海量云端动态数据清洗方法。在数据采集模块,对动态数据进行预处理。基于边缘计算构建数据筛选模型,将企业数据进行分类。计算企业数据的传输延时和耗能。通过时间序列理论依据,保证企业动态原始数据的真实性,从全局和局部两个方面划分云端的动态数据特征,完成动态数据清洗。实现基于边缘计算的清洗方法设计。实验结果表明:所提方法的准确度在99.8%以上,数据预测结果精度高,更具有应用价值。 展开更多
关键词 边缘计算 企业数据 云端数据 数据清洗
在线阅读 下载PDF
基于聚类分析方法的人才画像模型研究
16
作者 李颖 丁元欣 《信息技术》 2025年第9期7-12,共6页
人才画像是对人才进行全面评估的一种方法,可以形成对个人能力、特质和潜力的综合认知。文中提出一种基于聚类分析的人才画像模型设计方法。首先从社交媒体平台和UCI公开机器学习测试集中采集数据,进行数据清洗和特征提取;然后使用Apri... 人才画像是对人才进行全面评估的一种方法,可以形成对个人能力、特质和潜力的综合认知。文中提出一种基于聚类分析的人才画像模型设计方法。首先从社交媒体平台和UCI公开机器学习测试集中采集数据,进行数据清洗和特征提取;然后使用Apriori算法进行用户关联分析,挖掘用户行为之间的相关性;最后采用改进的K-means聚类算法对用户数据进行聚类分析,建立人才画像模型。通过实验验证,文中提出的方法比GMM聚类算法的查准率、查全率和F1值分别提高了18.8%、13.7%和17.9%。 展开更多
关键词 人才画像 数据清洗 特征提取 关联分析 聚类算法
在线阅读 下载PDF
基于多条件时间序列的海量并行数据清洗算法
17
作者 高祖彦 段昌盛 《微型电脑应用》 2025年第4期21-24,共4页
针对各领域数据海量且存在重复、缺失以及无效数据问题,研究基于多条件时间序列的海量并行数据清洗算法。通过近似符号聚合算法离散化和符号化处理数据多条件时间序列,并利用相似度测量方法求解处理后多条件时间序列的相似度。结合MapRe... 针对各领域数据海量且存在重复、缺失以及无效数据问题,研究基于多条件时间序列的海量并行数据清洗算法。通过近似符号聚合算法离散化和符号化处理数据多条件时间序列,并利用相似度测量方法求解处理后多条件时间序列的相似度。结合MapReduce并行计算平台,在该平台上编写基于时序相似度量的海量数据清洗算法,实现海量数据清洗的并行化处理。实验结果表明,所提算法清洗后的数据时间序列间距离值与真实值更加贴合,可通过清洗得到高质量数据,同时,并行化处理的引入,使数据清洗时间大幅缩短。 展开更多
关键词 多条件时间序列 海量并行数据 数据清洗 MAPREDUCE
在线阅读 下载PDF
区块链技术赋能智慧城市社区精细化管理系统研究
18
作者 张惠峰 《软件》 2025年第3期169-171,共3页
本文探讨了区块链技术赋能智慧城市社区精细化管理系统设计与应用。区块链技术以其去中心化、不可篡改和透明性的核心特性,为智慧社区的建设提供了坚实的技术支撑。系统架构包括感知层、网络层、数据层和应用层,各层紧密协作,实现了社... 本文探讨了区块链技术赋能智慧城市社区精细化管理系统设计与应用。区块链技术以其去中心化、不可篡改和透明性的核心特性,为智慧社区的建设提供了坚实的技术支撑。系统架构包括感知层、网络层、数据层和应用层,各层紧密协作,实现了社区管理的智能化与高效化。前端界面设计注重用户友好性,后台系统则采用微服务架构,确保系统的稳定性和安全性。数据存储与共享通过区块链技术实现,确保了数据的可信性和安全性。 展开更多
关键词 区块链技术 智慧社区 管理系统 数据清洗
在线阅读 下载PDF
基于LogSparse Transformer模型的高校网络舆情预测与分析
19
作者 张友海 《佛山科学技术学院学报(自然科学版)》 2025年第3期61-68,共8页
针对高校网络舆情的快速变化和复杂性问题,提出一种基于LogSparse Transformer时序模型的预测方法。通过对数据进行预处理、长时序相关性挖掘以及长程依赖建模,构建了LogSparse Transformer模型并进行评估实验。实验结果表明,LogSparse ... 针对高校网络舆情的快速变化和复杂性问题,提出一种基于LogSparse Transformer时序模型的预测方法。通过对数据进行预处理、长时序相关性挖掘以及长程依赖建模,构建了LogSparse Transformer模型并进行评估实验。实验结果表明,LogSparse Transformer模型在预测准确性上优于传统方法和机器学习算法,同时具有更快的响应速度和实时处理能力。该模型能够有效捕捉高校舆情事件中的远距离依赖关系,并减少模型的时间复杂性,为高校舆情预测及管理提供了一种新的有效工具,有助于高校管理者及时响应和管理网络舆情。 展开更多
关键词 网络舆情 LogSparse Transformer时序模型 高校管理 数据清洗 注意力机制
在线阅读 下载PDF
基于粒子群优化堆叠降噪自编码器的电力设备状态数据质量提升 被引量:1
20
作者 计蓉 侯慧娟 +3 位作者 盛戈皞 张立静 舒博 江秀臣 《上海交通大学学报》 北大核心 2025年第6期780-788,I0007,共10页
当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.... 当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.针对此问题,提出一种基于改进堆叠降噪自编码器的数据清洗方法.首先,采用粒子群算法优化堆叠降噪自编码器中的超参数;然后,利用堆叠降噪自编码器提取、还原数据特征的特点来进行数据清洗,实现对孤立点的修复和对空缺数据的填补,以有效提升电力设备状态数据的质量.所提方法简单高效,可以同时提高数据集的准确性和完整性.以电力设备的历史运行数据为例进行测试,算例结果表明所提方法相比于其他经典方法,数据清洗效果更好,且针对不同异常程度和运行状态的数据集都有良好的清洗效果,能够提高电力设备状态数据的质量. 展开更多
关键词 电力设备 状态数据 堆叠降噪自编码器 数据清洗
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部