期刊文献+
共找到359,038篇文章
< 1 2 250 >
每页显示 20 50 100
UAV data link anti-interference via SLHS-SVM-AdaBoost algorithm:Classification prediction and route planning 被引量:1
1
作者 Shuo Zeng Xiao-Jia Xiang +2 位作者 Yong-Peng Dou Jing-Cheng Du Guang He 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第4期37-52,共16页
The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this a... The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this area has encountered several limitations:Classifiers exhibit low training efficiency,their precision is notably reduced when dealing with imbalanced samples,and they cannot be applied to the condition where the UAV’s flight altitude and the antenna bearing vary.This paper proposes the sequential Latin hypercube sampling(SLHS)-support vector machine(SVM)-AdaBoost algorithm,which enhances the training efficiency of the base classifier and circumvents local optima during the search process through SLHS optimization.Additionally,it mitigates the bottleneck of sample imbalance by adjusting the sample weight distribution using the AdaBoost algorithm.Through comparison,the modeling efficiency,prediction accuracy on the test set,and macro-averaged values of precision,recall,and F1-score for SLHS-SVM-AdaBoost are improved by 22.7%,5.7%,36.0%,25.0%,and 34.2%,respectively,compared with Grid-SVM.Additionally,these values are improved by 22.2%,2.1%,11.3%,2.8%,and 7.4%,respectively,compared with particle swarm optimization(PSO)-SVM-AdaBoost.Combining Latin hypercube sampling with the SLHS-SVM-AdaBoost algorithm,the classification prediction model of anti-interference performance of UAV data links,which took factors like three-dimensional position of UAV and antenna bearing into consideration,is established and used to assess the safety of the classical flying path and optimize the flying route.It was found that the risk of loss of communications could not be completely avoided by adjusting the flying altitude based on the classical path,whereas intelligent path planning based on the classification prediction model of anti-interference performance can realize complete avoidance of being interfered meanwhile reducing the route length by at least 2.3%,thus benefiting both safety and operation efficiency. 展开更多
关键词 anti-interference performance Classification prediction data link Route planning Sequential Latin hypercube sampling(SLHS) Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Anti-interference methods for narrowband and repeater-modulation interference in airborne SAR systems
2
作者 Kai Chen Yong-Bo Zhao +3 位作者 Kai Jiang Long Sun Kun Deng Chang-Chun Ding 《Journal of Electronic Science and Technology》 2025年第3期1-12,共12页
With the advancement of electronic countermeasures,airborne synthetic aperture radar(SAR)systems are facing increasing challenges in maintaining effective performance in hostile environments.In particular,high-power i... With the advancement of electronic countermeasures,airborne synthetic aperture radar(SAR)systems are facing increasing challenges in maintaining effective performance in hostile environments.In particular,high-power interference can severely degrade SAR imaging and signal processing,often rendering target detection impossible.This highlights the urgent need for robust anti-interference solutions in both the signal processing and image processing domains.While current methods address interference across various domains,techniques such as waveform modification and spatial filtering typically increase the system costs and complexity.To overcome these limitations,we propose a novel approach that leverages the multi-domain characteristics of interference to efficiently suppress narrowband interference and repeater modulation interference.Specifically,narrowband interference is mitigated using notch filtering,a signal processing technique that effectively filters out unwanted frequencies,while repeater modulation interference is addressed through strong signal amplitude normalization,which enhances both the signal and image processing quality.These methods were validated through tests on real SAR data,demonstrating significant improvements in the imaging performance and system robustness.Our approach offers valuable insights for advancing anti-interference technologies in SAR systems and provides a cost-effective solution to enhance their resilience in complex electronic warfare environments. 展开更多
关键词 Airborne radar Narrowband interference Repeater modulation interference Signal and image processing anti-interference
在线阅读 下载PDF
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
3
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
4
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
5
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments
6
作者 Yeasul Kim Chaeeun Won Hwankuk Kim 《Computers, Materials & Continua》 2026年第1期247-274,共28页
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp... With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy. 展开更多
关键词 Encrypted traffic attack detection data sampling technique AI-based detection IoT environment
在线阅读 下载PDF
Graph-Based Unified Settlement Framework for Complex Electricity Markets:Data Integration and Automated Refund Clearing
7
作者 Xiaozhe Guo Suyan Long +4 位作者 Ziyu Yue Yifan Wang Guanting Yin Yuyang Wang Zhaoyuan Wu 《Energy Engineering》 2026年第1期56-90,共35页
The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack... The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments. 展开更多
关键词 Electricity market market settlement data model graph database market refund clearing
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
8
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Individual Software Expertise Formalization and Assessment from Project Management Tool Databases
9
作者 Traian-Radu Plosca Alexandru-Mihai Pescaru +1 位作者 Bianca-Valeria Rus Daniel-Ioan Curiac 《Computers, Materials & Continua》 2026年第1期389-411,共23页
Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods... Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results. 展开更多
关键词 Expertise formalization transformer-based models natural language processing augmented data project management tool skill classification
在线阅读 下载PDF
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
10
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
AI-driven integration of multi-omics and multimodal data for precision medicine
11
作者 Heng-Rui Liu 《Medical Data Mining》 2026年第1期1-2,共2页
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ... High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1). 展开更多
关键词 high throughput transcriptomics multi omics single cell multimodal learning frameworks foundation models omics data modalitiesemerging ai driven precision medicine
在线阅读 下载PDF
Multimodal artificial intelligence integrates imaging,endoscopic,and omics data for intelligent decision-making in individualized gastrointestinal tumor treatment
12
作者 Hui Nian Yi-Bin Wu +5 位作者 Yu Bai Zhi-Long Zhang Xiao-Huang Tu Qi-Zhi Liu De-Hua Zhou Qian-Cheng Du 《Artificial Intelligence in Gastroenterology》 2026年第1期1-19,共19页
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ... Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies. 展开更多
关键词 Multimodal artificial intelligence Gastrointestinal tumors Individualized therapy Intelligent diagnosis Treatment optimization Prognostic prediction data fusion Deep learning Precision medicine
在线阅读 下载PDF
Cosmic Acceleration and the Hubble Tension from Baryon Acoustic Oscillation Data
13
作者 Xuchen Lu Shengqing Gao Yungui Gong 《Chinese Physics Letters》 2026年第1期327-332,共6页
We investigate the null tests of cosmic accelerated expansion by using the baryon acoustic oscillation(BAO)data measured by the dark energy spectroscopic instrument(DESI)and reconstruct the dimensionless Hubble parame... We investigate the null tests of cosmic accelerated expansion by using the baryon acoustic oscillation(BAO)data measured by the dark energy spectroscopic instrument(DESI)and reconstruct the dimensionless Hubble parameter E(z)from the DESI BAO Alcock-Paczynski(AP)data using Gaussian process to perform the null test.We find strong evidence of accelerated expansion from the DESI BAO AP data.By reconstructing the deceleration parameter q(z) from the DESI BAO AP data,we find that accelerated expansion persisted until z■0.7 with a 99.7%confidence level.Additionally,to provide insights into the Hubble tension problem,we propose combining the reconstructed E(z) with D_(H)/r_(d) data to derive a model-independent result r_(d)h=99.8±3.1 Mpc.This result is consistent with measurements from cosmic microwave background(CMB)anisotropies using the ΛCDM model.We also propose a model-independent method for reconstructing the comoving angular diameter distance D_(M)(z) from the distance modulus μ,using SNe Ia data and combining this result with DESI BAO data of D_(M)/r_(d) to constrain the value of r_(d).We find that the value of r_(d),derived from this model-independent method,is smaller than that obtained from CMB measurements,with a significant discrepancy of at least 4.17σ.All the conclusions drawn in this paper are independent of cosmological models and gravitational theories. 展开更多
关键词 baryon acoustic oscillation bao data cosmic accelerated expansion dimensionless hubble parameter reconstructing deceleration parameter null testwe accelerated expansion null tests gaussian process
原文传递
A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets
14
作者 Kwok Tai Chui Varsha Arya +2 位作者 Brij B.Gupta Miguel Torres-Ruiz Razaz Waheeb Attar 《Computers, Materials & Continua》 2026年第1期1410-1432,共23页
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d... Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested. 展开更多
关键词 Convolutional neural network data generation deep support vector machine feature extraction generative artificial intelligence imbalanced dataset medical diagnosis Parkinson’s disease small-scale dataset
在线阅读 下载PDF
The Research and Application of the Anti-Interference Techniques of Electronic Device in Power System 被引量:1
15
作者 吴维宁 张文亮 +1 位作者 吴峡 李建建 《Electricity》 2001年第4期40-43,共4页
This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
关键词 electric power system electronic measurement and/or control device anti-interference measures
在线阅读 下载PDF
Anti-interference beam pattern design based on second-order cone programming optimization 被引量:1
16
作者 戴文舒 鲍凯凯 +1 位作者 王萍 王黎明 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第3期255-260,共6页
When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be op... When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming. 展开更多
关键词 anti-interference beam pattern second-order cone programming optimization (SOCP) weak signal detection
在线阅读 下载PDF
Reconfigurable anti-interference RF transceiver for cognitive radio application
17
作者 游长江 柳靖 +1 位作者 张晓东 朱晓维 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期123-127,共5页
An RF transceiver composed of a zero-IF receiver and a direct up-conversion transmitter for cognitive radio applications is presented. The adjustable channel filter array in the receiver is used to suppress adjacent c... An RF transceiver composed of a zero-IF receiver and a direct up-conversion transmitter for cognitive radio applications is presented. The adjustable channel filter array in the receiver is used to suppress adjacent channel interference in televisions signal coexistence environments. The low noise amplifier (LNA) with wide dynamic range and high linearity is employed to enhance the anti-interference competence of the zero-IF receiver. Meanwhile, the high linearity power amplifier (PA) .is used to promote the adjacent channel power ratio (ACPR) characteristic of the direct up-conversion transmitter. The measured error vector magnitude (EVM) results show that the anti-interference competence of the zero-IF receiver is dramatically enhanced by employing a channel filter array. The measured ACPR of the direct up-conversion transmitter is -47. 98 dBc on the channel centered at 714 MHz when the output power is 27 dBm. 展开更多
关键词 ZERO-IF direct up-conversion anti-interference cognitive radio white space spectrum
在线阅读 下载PDF
Static-shift suppression and anti-interference signal processing for CSAMT based on Guided Image Filtering 被引量:2
18
作者 Enhua Jiang Rujun Chen +2 位作者 Debin Zhu Weiqiang Liu Regean Pitiya 《Earthquake Research Advances》 CSCD 2022年第1期44-55,共12页
Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity... Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity curves along with axial log-log coordinates.Such an effect,if not properly processed,can distort the resistivity of rock formation and the depth of interfaces,and even make the geological structures unrecognizable.In this paper,we discuss the reasons and characteristics of the static shift and summarize the previous studies regarding static shift correction.Then,we propose the Guided Image Filtering algorithm to suppress static shifts in CSAMT.In detail,we use the multi-window superposition method to superimpose 1D signals into a 2D matrix image,which is subsequently processed with Guided Image Filtering.In the synthetic model study and field examples,the Guided Image Filtering algorithm has effectively corrected and suppressed static shifts,and finally improved the precision of data interpretation. 展开更多
关键词 CSAMT Static shift Guided image filtering anti-interference
在线阅读 下载PDF
Anti-interference ultra-wideband system based on spreading and interleaving 被引量:1
19
作者 Zhang Shibing Zhang Lijun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期236-242,共7页
To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on sprea... To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on spreading and interleaving is addressed. It will exploit the frequency diversity across the subcarriers and provide the robustness to narrow-band interference, by spreading the coded bit streams within each sub-band and interleaving across all sub-bands. Simulating results show that the spreading and interleaving provide about 5 dB to 10 dB advantages over the conventional multiband orthogonal frequency-division multiplexing ultra-wideband system in signal-to-interference ratio. Spreading and interleaving is an effective cure for enhancing the robustness to narrowband interference. 展开更多
关键词 Communications technology anti-interference SPREADING INTERLEAVING Ultra-wideband.
在线阅读 下载PDF
Self-powered anti-interference photoelectrochemical immunosensor based on Au/ZIS/CIS heterojunction photocathode with zwitterionic peptide anchoring 被引量:1
20
作者 Ze Hu Yaqun Xu +2 位作者 Hao Wang Gao-Chao Fan Xiliang Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第11期4750-4755,共6页
Accurate detection of important biomarkers with ultra-low levels in complex biological matrix is one of the frontier scientific issues because of possible signal interference of potential reductive agents and protein ... Accurate detection of important biomarkers with ultra-low levels in complex biological matrix is one of the frontier scientific issues because of possible signal interference of potential reductive agents and protein molecules.Herein,a self-powered anti-interference photoelectrochemical(PEC)immunosensor was explored for sensitive and specific detection of model target of cardiac troponinⅠ(cTnI).Specifically,a novel ternary heterojunction served as the photocathode to offer a remarkable current output and a zwitterionic peptide was introduced to build a robust antifouling biointerface.CuInS(CIS)film with porous network nanostructure was first prepared and then modified in order with ZnInS(ZIS)nanocrystals and Au nanoparticles to fabricate the Au/ZIS/CIS heterojunction photocathode.After capture cTnI antibody(Ab)was immobilized,the zwitterionic peptide KAEAKAEAPPPPC was then anchored to compete the immunosensor.The elaborated PEC immunosensor exhibited high sensitivity for target cTnI antigen(Ag)detection,with good anti-interference against reductive agents and nonspecific proteins.This integration strategy of heterojunction photocathode with zwitterionic peptide provides a new sight to develop advanced PEC immunosensors applying in practical biosamples. 展开更多
关键词 PHOTOELECTROCHEMISTRY Immunoassay Zwitterionic peptide PHOTOCATHODE anti-interference
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部