Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and h...Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and high-throughput data. Currently, high-throughput sequencing technology has been widely applied in multi-level researches on genomics, transcriptomics and epigenomics. And it has fundamentally changed the way we approach problems in basic and translational researches and created many new possibilities. This paper presented a general description of high-throughput sequencing technology and a comprehensive review of its application with plain, concisely and precisely. In order to help researchers finish their work faster and better, promote science amateurs and understand it easier and better.展开更多
RNA-sequencing(RNA-seq),based on next-generation sequencing technologies,has rapidly become a standard and popular technology for transcriptome analysis.However,serious challenges still exist in analyzing and interpre...RNA-sequencing(RNA-seq),based on next-generation sequencing technologies,has rapidly become a standard and popular technology for transcriptome analysis.However,serious challenges still exist in analyzing and interpreting the RNA-seq data.With the development of high-throughput sequencing technology,the sequencing depth of RNA-seq data increases explosively.The intricate biological process of transcriptome is more complicated and diversified beyond our imagination.Moreover,most of the remaining organisms still have no available reference genome or have only incomplete genome annotations.Therefore,a large number of bioinformatics methods for various transcriptomics studies are proposed to effectively settle these challenges.This review comprehensively summarizes the various studies in RNA-seq data analysis and their corresponding analysis methods,including genome annotation,quality control and pre-processing of reads,read alignment,transcriptome assembly,gene and isoform expression quantification,differential expression analysis,data visualization and other analyses.展开更多
Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are a...Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.展开更多
基金Supported by the National Natural Science Foundations of China(3127218631301791)
文摘Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and high-throughput data. Currently, high-throughput sequencing technology has been widely applied in multi-level researches on genomics, transcriptomics and epigenomics. And it has fundamentally changed the way we approach problems in basic and translational researches and created many new possibilities. This paper presented a general description of high-throughput sequencing technology and a comprehensive review of its application with plain, concisely and precisely. In order to help researchers finish their work faster and better, promote science amateurs and understand it easier and better.
文摘RNA-sequencing(RNA-seq),based on next-generation sequencing technologies,has rapidly become a standard and popular technology for transcriptome analysis.However,serious challenges still exist in analyzing and interpreting the RNA-seq data.With the development of high-throughput sequencing technology,the sequencing depth of RNA-seq data increases explosively.The intricate biological process of transcriptome is more complicated and diversified beyond our imagination.Moreover,most of the remaining organisms still have no available reference genome or have only incomplete genome annotations.Therefore,a large number of bioinformatics methods for various transcriptomics studies are proposed to effectively settle these challenges.This review comprehensively summarizes the various studies in RNA-seq data analysis and their corresponding analysis methods,including genome annotation,quality control and pre-processing of reads,read alignment,transcriptome assembly,gene and isoform expression quantification,differential expression analysis,data visualization and other analyses.
文摘Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.