Given the heightened competition for water in energy,food,and the environment in Africa,it is essential to implement sound integrated plans for basin or regional sustainable development.Zambezi River Basin(ZRB),one of...Given the heightened competition for water in energy,food,and the environment in Africa,it is essential to implement sound integrated plans for basin or regional sustainable development.Zambezi River Basin(ZRB),one of the least developed basins in the world,is under development with great ambition for hydropower and irrigation infrastructure.Here,we proposed a framework to assess different water usage trajectories for agricultural and hydropower development scenarios with data derived from big earth data method.Three future scenarios were set for irrigaiton expansion and development hydropower construction according to current plan,global average and high level,respectively.Using spatial analysis methods,average evapotranspiration(ET)difference before and after irrigation expansion and reservoir construction was used to estimate water usage trajectories.Results show that the total available water resource for ZRB is estimated as 111.8 km3.Due to irrigation and reservoirs construction,additional annual water consumption is estimated to be 0.9 and 14.2 km3 for 2017,respectively.By analyzing the water-energy-food-environment(WEFE)nexus given water availability constraints,we found that the water development boundary in the ZRB could support increases in both irrigation proportion and dam density to global average levels of 20%and 0.56/104 km2,respectively,without degrading the environment.The proposed paradigm for assessing water resources has the potential to endow the ZRB with significant capacity to support the achievement of relevant Sustainable Development Goals(SDGs).展开更多
Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal...Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.展开更多
This paper presents a generic procedure to implement a scalable and high performance data analysis framework for large-scale scientific simulation within an in-situ infrastructure. It demonstrates a unique capability ...This paper presents a generic procedure to implement a scalable and high performance data analysis framework for large-scale scientific simulation within an in-situ infrastructure. It demonstrates a unique capability for global Earth system simulations using advanced computing technologies (i.e., automated code analysis and instrumentation), in-situ infrastructure (i.e., ADIOS) and big data analysis engines (i.e., SciKit-learn). This paper also includes a useful case that analyzes a globe Earth System simulations with the integration of scalable in-situ infrastructure and advanced data processing package. The in-situ data analysis framework can provides new insights on scientific discoveries in multiscale modeling paradigms.展开更多
In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming...In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming cores S140 and S199 were carried out. The data were processed by the Fourier filtering method. Line temperature fluctuations that exceed the noise level were detected. Assuming the cores consist of a large number of randomly moving small thermal fragments, the total number of frag- ments is - 4 × 106 for the region with linear size - 0.1 pc in S140 and - 106 for the region with linear size - 0.3 pc in S 199. Physical parameters of fragments in S 140 were obtained from detailed modeling of the HCN emission in the framework of the clumpy cloud model.展开更多
Due to the low spatial resolution of images taken from the Chang'e-1 (CE-I) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD...Due to the low spatial resolution of images taken from the Chang'e-1 (CE-I) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high- resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.展开更多
We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we ...We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs.展开更多
Determining accurate pulsar timing model parameters is essential for establishing TT(PT),a realization of Terrestrial Time(TT)based on a pulsar timescale(PT).This study discusses the impact of different data spans on ...Determining accurate pulsar timing model parameters is essential for establishing TT(PT),a realization of Terrestrial Time(TT)based on a pulsar timescale(PT).This study discusses the impact of different data spans on the accuracy of pulsar timing model parameters when determining pulsar timing model parameters.Using observations of PSR J0437-4715,J1909-3744,J1713+0747,and J1744-1134 from the second data release of the International Pulsar Timing Array(IPTA II,Version A),we compare the accuracy of the timing model parameters determined by these observations with different data spans.The results show for PSR J0437-4715,J1713+0747,and J1909-3744,the amplitude fluctuations of rotational frequency remain within 10^(−15),10^(−14),and 10^(−14) Hz,respectively,when the data spans for determining pulsar timing model parameters exceed 13,14,and 6 yr.Additionally,the one-year accuracy of TT(PT)is crucial for its application in timekeeping.By comparing the frequency deviations of TT(PT)relative to TT(BIPM)under both ideal(k_(r))and actual(k_(p))conditions across different data spans,we find that when the data span reaches the duration above,the accuracy of TT(PT)surpasses that of TT(TAI)under ideal conditions,slightly inferior under actual conditions.This suggests with improved observational technologies,the accuracy of TT(PT)can be further enhanced.展开更多
We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the ampli...We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the amplitudes of the three periods is studied. The results show that around 1750 and 1800, the amplitude of the 53-yr period was much higher than that of the the 11-yr period, that the ca. 53-yr period was apparent only for the interval from 1725 to 1850, and was very low after 1850, that around 1750, 1800 and 1900, the amplitude of the 101-yr period was higher than that of the 11-yr period and that, from 1940 to 2000, the 11-yr period greatly dominates over the other two periods.展开更多
This paper summarizes the new developments in the study of barium rare-earth fluor-carbonate mineral structures .The second order superstructure of cebaite -(Ce ) was solved by using high power X-ray single crystal di...This paper summarizes the new developments in the study of barium rare-earth fluor-carbonate mineral structures .The second order superstructure of cebaite -(Ce ) was solved by using high power X-ray single crystal diffractometer . Five kinds of coordination forms were found . All atoms in the cell , including C and F , were properly located . In the process of study in a cordylite-(Ce ), a new mineral was discovered , whose chemical formula is (Ca0.5□0.5) BaCe2 (CO3)4F . It is isostructural with baiyuneboite - (Ce ), but different in composition (Na in baiyuneboite- (Ce ) is substituted by Ca disorderly ) . On the basis of the studies a proposal to re-define cordylite-(Ce )as a mineral group name is put forth by the authors . Finally a new type of twinning of huanghoite-(Ce ) was found on the systematical absence of diffraction data by means of a single crystal diffractometer .展开更多
The nature of random errors in any data set is Gaussian, which is a well established fact according to the Central Limit Theorem. Supernovae type Ia data have played a crucial role in major discoveries in cosmology. U...The nature of random errors in any data set is Gaussian, which is a well established fact according to the Central Limit Theorem. Supernovae type Ia data have played a crucial role in major discoveries in cosmology. Unlike in laboratory experiments, astronomical measurements cannot be performed in controlled situations. Thus, errors in astronomical data can be more severe in terms of systematics and non-Gaussianity compared to those of laboratory experiments. In this paper, we use the Kolmogorov-Smiruov statistic to test non-Gaussianity in high-z supernovae data. We apply this statistic to four data sets, i.e., Gold data (2004), Gold data (2007), the Union2 catalog and the Union2.1 data set for our analysis. Our results show that in all four data sets the errors are consistent with a Gaussian distribution.展开更多
Constructing and maintaining a stable terrestrial reference frame (TRF) is one of the key objectives of fundamental astronomy and geodesy. The datum realization for all the global TRF versions, such as ITRF2014 and ...Constructing and maintaining a stable terrestrial reference frame (TRF) is one of the key objectives of fundamental astronomy and geodesy. The datum realization for all the global TRF versions, such as ITRF2014 and its predecessor ITRF2008, assumes linear time evolution for transformation parameters and then imposes some conditions on these Helmert transformation parameters. In this paper, we investigate a new approach, which is based on weekly estimation of station positions and Helmert transformation parameters from a combination of the solutions of four space-geodetic techniques, i.e., Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI), Global Positioning System (GPS) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). For this study, an interval of one week is chosen because the arc length of the SLR solutions is seven days. The major advantage of this weekly estimated reference frame is that both the non-linear station motions and the non-linear origin motion are implicitly taken into account. In order to study the non-linear behavior of station motions and physical parameters, ITRF2008 is used as a reference. As for datum definition of weekly reference frame, on one hand SLR is the unique technique to realize the origin and determine the scale together with VLBI, and on the other hand the orientation is realized via no net rotation with respect to ITRF2005 on a subset of core stations. Given the fact that without enough collocations an inter-technique combined TRF could not exist, the selection and relative weight of local ties surveyed at co-location sites are critical issues. To get stable results, we first assume that, if there were no events such as equipment changes between the measurement epoch of the local tie and that of the space- geodetic solution, the relative position between the two co-located stations should be invariant and this local tie could be used for computing the inter-technique combined reference flame in those weeks during the stable period of this tie. The resulting time series of both station positions and transformation parameters are studied in detail and are compared with ITRF2008. The residual station positions in the weekly combined reference frame are usually in the range of two millimeters without any periodic characteristic, but the residual station positions, when subtracting the regularized station position in ITRF2008, may reach a magnitude of a few centimeters and seem to have a significant annual signal. The physical parameter series between the weekly reference frame and ITRF2008 also show the obvious existence of an annual signal and reach a magnitude of one centimeter for origin motion and two parts per billion (ppb) for scale.展开更多
We report the discovery of an isolated millisecond pulsar M15O(J2129+1210O)from the globular cluster M15(NGC 7078)with a period of 11.06686 ms and a dispersion measure of~67.44 cm^(-3)pc.Its spin period is so close to...We report the discovery of an isolated millisecond pulsar M15O(J2129+1210O)from the globular cluster M15(NGC 7078)with a period of 11.06686 ms and a dispersion measure of~67.44 cm^(-3)pc.Its spin period is so close to the 10th harmonic of the bright pulsar M15A(~11.06647 ms)that it was missed in a previous pulsar search.We suggest adding the spectrum in the pulsar candidate diagnostic plot to identify new signals near the harmonics.M15O has the first spin frequency derivative and the second spin frequency derivative,being 1.79191(5)×10^(-14)Hz s^(-1)and 3.3133(6)×10^(-23)Hz s^(-2),respectively.Its projected distance from the optical center of M15 is the closest among all the pulsars in M15.The origin can be something from the center of the massive and core-collapsed globular cluster M15.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41861144019,W2412015,42301409)。
文摘Given the heightened competition for water in energy,food,and the environment in Africa,it is essential to implement sound integrated plans for basin or regional sustainable development.Zambezi River Basin(ZRB),one of the least developed basins in the world,is under development with great ambition for hydropower and irrigation infrastructure.Here,we proposed a framework to assess different water usage trajectories for agricultural and hydropower development scenarios with data derived from big earth data method.Three future scenarios were set for irrigaiton expansion and development hydropower construction according to current plan,global average and high level,respectively.Using spatial analysis methods,average evapotranspiration(ET)difference before and after irrigation expansion and reservoir construction was used to estimate water usage trajectories.Results show that the total available water resource for ZRB is estimated as 111.8 km3.Due to irrigation and reservoirs construction,additional annual water consumption is estimated to be 0.9 and 14.2 km3 for 2017,respectively.By analyzing the water-energy-food-environment(WEFE)nexus given water availability constraints,we found that the water development boundary in the ZRB could support increases in both irrigation proportion and dam density to global average levels of 20%and 0.56/104 km2,respectively,without degrading the environment.The proposed paradigm for assessing water resources has the potential to endow the ZRB with significant capacity to support the achievement of relevant Sustainable Development Goals(SDGs).
基金funded by the National Natural Science Foundation of China(NSFC)the Chinese Academy of Sciences(CAS)(grant No.U2031209)the National Natural Science Foundation of China(NSFC,grant Nos.11872128,42174192,and 91952111)。
文摘Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.
文摘This paper presents a generic procedure to implement a scalable and high performance data analysis framework for large-scale scientific simulation within an in-situ infrastructure. It demonstrates a unique capability for global Earth system simulations using advanced computing technologies (i.e., automated code analysis and instrumentation), in-situ infrastructure (i.e., ADIOS) and big data analysis engines (i.e., SciKit-learn). This paper also includes a useful case that analyzes a globe Earth System simulations with the integration of scalable in-situ infrastructure and advanced data processing package. The in-situ data analysis framework can provides new insights on scientific discoveries in multiscale modeling paradigms.
基金support of the RFBR grants(projects 15–02–06098,16–02–00761 and18–02–00660)support of the Russian Science Foundation grant(project 17–12–01256)
文摘In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming cores S140 and S199 were carried out. The data were processed by the Fourier filtering method. Line temperature fluctuations that exceed the noise level were detected. Assuming the cores consist of a large number of randomly moving small thermal fragments, the total number of frag- ments is - 4 × 106 for the region with linear size - 0.1 pc in S140 and - 106 for the region with linear size - 0.3 pc in S 199. Physical parameters of fragments in S 140 were obtained from detailed modeling of the HCN emission in the framework of the clumpy cloud model.
基金funded by the National Natural Science Foundation of China (Grant No. 51575388)
文摘Due to the low spatial resolution of images taken from the Chang'e-1 (CE-I) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high- resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.
文摘We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(grant No.XDA0350502)the National SKA Program of China(No.2020SKA0120103)the National Natural Science Foundation of China(No.U1831130).
文摘Determining accurate pulsar timing model parameters is essential for establishing TT(PT),a realization of Terrestrial Time(TT)based on a pulsar timescale(PT).This study discusses the impact of different data spans on the accuracy of pulsar timing model parameters when determining pulsar timing model parameters.Using observations of PSR J0437-4715,J1909-3744,J1713+0747,and J1744-1134 from the second data release of the International Pulsar Timing Array(IPTA II,Version A),we compare the accuracy of the timing model parameters determined by these observations with different data spans.The results show for PSR J0437-4715,J1713+0747,and J1909-3744,the amplitude fluctuations of rotational frequency remain within 10^(−15),10^(−14),and 10^(−14) Hz,respectively,when the data spans for determining pulsar timing model parameters exceed 13,14,and 6 yr.Additionally,the one-year accuracy of TT(PT)is crucial for its application in timekeeping.By comparing the frequency deviations of TT(PT)relative to TT(BIPM)under both ideal(k_(r))and actual(k_(p))conditions across different data spans,we find that when the data span reaches the duration above,the accuracy of TT(PT)surpasses that of TT(TAI)under ideal conditions,slightly inferior under actual conditions.This suggests with improved observational technologies,the accuracy of TT(PT)can be further enhanced.
基金Supported by the National Natural Science Foundation of China
文摘We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the amplitudes of the three periods is studied. The results show that around 1750 and 1800, the amplitude of the 53-yr period was much higher than that of the the 11-yr period, that the ca. 53-yr period was apparent only for the interval from 1725 to 1850, and was very low after 1850, that around 1750, 1800 and 1900, the amplitude of the 101-yr period was higher than that of the 11-yr period and that, from 1940 to 2000, the 11-yr period greatly dominates over the other two periods.
文摘This paper summarizes the new developments in the study of barium rare-earth fluor-carbonate mineral structures .The second order superstructure of cebaite -(Ce ) was solved by using high power X-ray single crystal diffractometer . Five kinds of coordination forms were found . All atoms in the cell , including C and F , were properly located . In the process of study in a cordylite-(Ce ), a new mineral was discovered , whose chemical formula is (Ca0.5□0.5) BaCe2 (CO3)4F . It is isostructural with baiyuneboite - (Ce ), but different in composition (Na in baiyuneboite- (Ce ) is substituted by Ca disorderly ) . On the basis of the studies a proposal to re-define cordylite-(Ce )as a mineral group name is put forth by the authors . Finally a new type of twinning of huanghoite-(Ce ) was found on the systematical absence of diffraction data by means of a single crystal diffractometer .
文摘The nature of random errors in any data set is Gaussian, which is a well established fact according to the Central Limit Theorem. Supernovae type Ia data have played a crucial role in major discoveries in cosmology. Unlike in laboratory experiments, astronomical measurements cannot be performed in controlled situations. Thus, errors in astronomical data can be more severe in terms of systematics and non-Gaussianity compared to those of laboratory experiments. In this paper, we use the Kolmogorov-Smiruov statistic to test non-Gaussianity in high-z supernovae data. We apply this statistic to four data sets, i.e., Gold data (2004), Gold data (2007), the Union2 catalog and the Union2.1 data set for our analysis. Our results show that in all four data sets the errors are consistent with a Gaussian distribution.
基金supported by the National Natural Science Foundation of China(Grant Nos.11773058 and 11373058)
文摘Constructing and maintaining a stable terrestrial reference frame (TRF) is one of the key objectives of fundamental astronomy and geodesy. The datum realization for all the global TRF versions, such as ITRF2014 and its predecessor ITRF2008, assumes linear time evolution for transformation parameters and then imposes some conditions on these Helmert transformation parameters. In this paper, we investigate a new approach, which is based on weekly estimation of station positions and Helmert transformation parameters from a combination of the solutions of four space-geodetic techniques, i.e., Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI), Global Positioning System (GPS) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). For this study, an interval of one week is chosen because the arc length of the SLR solutions is seven days. The major advantage of this weekly estimated reference frame is that both the non-linear station motions and the non-linear origin motion are implicitly taken into account. In order to study the non-linear behavior of station motions and physical parameters, ITRF2008 is used as a reference. As for datum definition of weekly reference frame, on one hand SLR is the unique technique to realize the origin and determine the scale together with VLBI, and on the other hand the orientation is realized via no net rotation with respect to ITRF2005 on a subset of core stations. Given the fact that without enough collocations an inter-technique combined TRF could not exist, the selection and relative weight of local ties surveyed at co-location sites are critical issues. To get stable results, we first assume that, if there were no events such as equipment changes between the measurement epoch of the local tie and that of the space- geodetic solution, the relative position between the two co-located stations should be invariant and this local tie could be used for computing the inter-technique combined reference flame in those weeks during the stable period of this tie. The resulting time series of both station positions and transformation parameters are studied in detail and are compared with ITRF2008. The residual station positions in the weekly combined reference frame are usually in the range of two millimeters without any periodic characteristic, but the residual station positions, when subtracting the regularized station position in ITRF2008, may reach a magnitude of a few centimeters and seem to have a significant annual signal. The physical parameter series between the weekly reference frame and ITRF2008 also show the obvious existence of an annual signal and reach a magnitude of one centimeter for origin motion and two parts per billion (ppb) for scale.
基金supported by the National Key R&D Program of China No.2022YFC2205202,No.2020SKA0120100the National Natural Science Foundation of China(NSFC,grant Nos.12373032,12003047,11773041,U2031119,12173052,and 12173053)+2 种基金supported by the Youth Innovation Promotion Association of CAS(id.2018075,Y2022027 and 2023064)the CAS“Light of West China”Programsupported by the Science and Technology Program of Guizhou Province under project No.QKHPTRC-ZDSYS[2023]003 and QKHFQ[2023]003。
文摘We report the discovery of an isolated millisecond pulsar M15O(J2129+1210O)from the globular cluster M15(NGC 7078)with a period of 11.06686 ms and a dispersion measure of~67.44 cm^(-3)pc.Its spin period is so close to the 10th harmonic of the bright pulsar M15A(~11.06647 ms)that it was missed in a previous pulsar search.We suggest adding the spectrum in the pulsar candidate diagnostic plot to identify new signals near the harmonics.M15O has the first spin frequency derivative and the second spin frequency derivative,being 1.79191(5)×10^(-14)Hz s^(-1)and 3.3133(6)×10^(-23)Hz s^(-2),respectively.Its projected distance from the optical center of M15 is the closest among all the pulsars in M15.The origin can be something from the center of the massive and core-collapsed globular cluster M15.