期刊文献+
共找到728篇文章
< 1 2 37 >
每页显示 20 50 100
Interpretable Data-Driven Learning With Fast Ultrasonic Detection for Battery Health Estimation
1
作者 Kailong Liu Yuhang Liu +2 位作者 Qiao Peng Naxin Cui Chenghui Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期267-269,共3页
Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) ... Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) batteries. However, the time-consuming signal data acquisition and the lack of interpretability of model still hinder its efficient deployment. Motivated by this, this letter proposes a novel and interpretable data-driven learning strategy through combining the benefits of explainable AI and non-destructive ultrasonic detection for battery SoH estimation. Specifically, after equipping battery with advanced ultrasonic sensor to promise fast real-time ultrasonic signal measurement, an interpretable data-driven learning strategy named generalized additive neural decision ensemble(GANDE) is designed to rapidly estimate battery SoH and explain the effects of the involved ultrasonic features of interest. 展开更多
关键词 ultrasonic detection interpretable data driven learning signal data acquisition battery health estimation lithium ion batteries generalized additive neural decision ensemble state health
在线阅读 下载PDF
AI-driven integration of multi-omics and multimodal data for precision medicine
2
作者 Heng-Rui Liu 《Medical Data Mining》 2026年第1期1-2,共2页
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ... High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1). 展开更多
关键词 high throughput transcriptomics multi omics single cell multimodal learning frameworks foundation models omics data modalitiesemerging ai driven precision medicine
在线阅读 下载PDF
Machine Learning for 5G and Beyond:From ModelBased to Data-Driven Mobile Wireless Networks 被引量:12
3
作者 Tianyu Wang Shaowei Wang Zhi-Hua Zhou 《China Communications》 SCIE CSCD 2019年第1期165-175,共11页
During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place i... During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes. 展开更多
关键词 mobile WIRELESS networks data-driven PARADIGM MACHINE learning
在线阅读 下载PDF
e-Learning环境学习测量研究进展与趋势——基于眼动应用视角 被引量:15
4
作者 张琪 杨玲玉 《中国电化教育》 CSSCI 北大核心 2016年第11期68-73,共6页
"日益关注学习测量"已成为教育变革的重要趋势,e-Learning环境学习测量的研究正日益突显多维整体、真实境脉、实时连续的特征。该文通过眼动应用视角透析e-Learning环境学习测量研究的进展与趋势。基于信息加工论、"直... "日益关注学习测量"已成为教育变革的重要趋势,e-Learning环境学习测量的研究正日益突显多维整体、真实境脉、实时连续的特征。该文通过眼动应用视角透析e-Learning环境学习测量研究的进展与趋势。基于信息加工论、"直接假说"和"眼脑假说",阐释眼动在信息提取、加工、整合以及意义建构中的重要作用。此外,围绕多媒体界面有效性、多媒体学习效果、数字阅读、信息加工过程和学习分析五个方面,对研究内容、研究结果和发展趋势进行梳理与分析。研究认为眼动技术有助于获取具备"大数量、全样本、实时性、微观指向"特性的学习数据,可以深入评估多媒体学习效果和阅读过程,量化注意力、认知过程和学习结果之间的关系,为拓展教育技术的研究手段和应用领域提供了方向指引。 展开更多
关键词 E-learning 数据驱动教学 学习测量 眼动范式
在线阅读 下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions 被引量:4
5
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
Vision for energy material design:A roadmap for integrated data-driven modeling 被引量:4
6
作者 Zhilong Wang Yanqiang Han +2 位作者 Junfei Cai An Chen Jinjin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期56-62,I0003,共8页
The application scope and future development directions of machine learning models(supervised learning, transfer learning, and unsupervised learning) that have driven energy material design are discussed.
关键词 Energy materials Material attributes Machine learning data driven
在线阅读 下载PDF
Data-Driven Iterative Learning Consensus Tracking Based on Robust Neural Models for Unknown Heterogeneous Nonlinear Multiagent Systems With Input Constraints
7
作者 Chong Zhang Yunfeng Hu +2 位作者 TingTing Wang Xun Gong Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 2025年第10期2153-2155,共3页
Dear Editor,Aiming at the consensus tracking problem of a class of unknown heterogeneous nonlinear multiagent systems(MASs)with input constraints,a novel data-driven iterative learning consensus control(ILCC)protocol ... Dear Editor,Aiming at the consensus tracking problem of a class of unknown heterogeneous nonlinear multiagent systems(MASs)with input constraints,a novel data-driven iterative learning consensus control(ILCC)protocol based on zeroing neural networks(ZNNs)is proposed.First,a dynamic linearization data model(DLDM)is acquired via dynamic linearization technology(DLT). 展开更多
关键词 dynamic linearization data model dldm consensus tracking problem input constraints consensus tracking unknown heterogeneous nonlinear multiagent systems robust neural models data driven iterative learning zeroing neural networks znns
在线阅读 下载PDF
Domain-Oriented Data-Driven Data Mining Based on Rough Sets 被引量:1
8
作者 Guoyin Wang 《南昌工程学院学报》 CAS 2006年第2期46-46,共1页
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data... Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world. 展开更多
关键词 data mining data-driven USER-driven domain-driven KDD Machine learning Knowledge Acquisition rough sets
在线阅读 下载PDF
Data-driven simulation in fluids animation: A survey
9
作者 Qian CHEN Yue WANG +1 位作者 Hui WANG Xubo YANG 《Virtual Reality & Intelligent Hardware》 2021年第2期87-104,共18页
The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in c... The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in computer graphics in recent years.First,we provide a brief introduction of physical based fluid simulation methods based on their spatial discretization,including Lagrangian,Eulerian,and hybrid methods.The characteristics of these underlying structures and their inherent connection with data driven methodologies are then analyzed.Subsequently,we review studies pertaining to a wide range of applications,including data-driven solvers,detail enhancement,animation synthesis,fluid control,and differentiable simulation.Finally,we discuss some related issues and potential directions in data-driven fluid simulation.We conclude that the fluid simulation combined with data-driven methods has some advantages,such as higher simulation efficiency,rich details and different pattern styles,compared with traditional methods under the same parameters.It can be seen that the data-driven fluid simulation is feasible and has broad prospects. 展开更多
关键词 Fluid simulation data driven Machine learning
在线阅读 下载PDF
Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform 被引量:1
10
作者 Xiangmin Guo Guangjun Liang +1 位作者 Jiayin Liu Xianyi Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期3305-3323,共19页
Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading... Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology. 展开更多
关键词 Blockchain Internet of Things(IoT) blockchain based cognitive computing Hybridized data driven Cognitive Computing(HD2C) Federated learning(FL) Proof of Authority(PoA)
在线阅读 下载PDF
基于GWO-DBN的反导装备体系效能评估方法研究 被引量:2
11
作者 赵海燕 周峰 +2 位作者 杨文静 刘迪 杨添元 《现代防御技术》 北大核心 2025年第2期45-54,共10页
针对现有效能预测方法难以反映反导装备体系实际效能的问题,提出一种基于“数据驱动+深度学习”的反导装备体系效能评估方法。在大量实验数据抽取、处理、分析的基础上,构建灰狼优化算法-深度置信网络(GWO-DBN)模型对数据进行训练学习,... 针对现有效能预测方法难以反映反导装备体系实际效能的问题,提出一种基于“数据驱动+深度学习”的反导装备体系效能评估方法。在大量实验数据抽取、处理、分析的基础上,构建灰狼优化算法-深度置信网络(GWO-DBN)模型对数据进行训练学习,以此获得反导装备体系效能的非线性拟合,并以某次反导体系效能评估为例进行了仿真实验。结果表明,该评估方法可行、可靠,能够为反导装备体系论证和改进提供较高的参考价值和借鉴意义。 展开更多
关键词 反导装备体系 效能评估 数据驱动 深度学习 灰狼优化算法(GWO) 深度置信网络(DBN)
在线阅读 下载PDF
人工智能高质量数据集的发展趋势及热点--基于CiteSpace的知识图谱分析 被引量:5
12
作者 王鹏 程思儒 《技术经济与管理研究》 北大核心 2025年第4期43-48,共6页
近些年来,人工智能快速发展,人工智能技术迅速进步,深入人们生活的方方面面,需要加快构建高质量数据集。基于CiteSpace的知识图谱分析,系统梳理了我国人工智能高质量数据集的研究趋势和热点方向。研究表明,人工智能高质量数据集在多样... 近些年来,人工智能快速发展,人工智能技术迅速进步,深入人们生活的方方面面,需要加快构建高质量数据集。基于CiteSpace的知识图谱分析,系统梳理了我国人工智能高质量数据集的研究趋势和热点方向。研究表明,人工智能高质量数据集在多样性、针对性和规模上具有显著优势,并广泛应用于医疗健康、自动驾驶和智能制造等领域。此外,政策支持、数据驱动和深度学习技术创新成为研究的核心方向。从理论和实践层面对人工智能高质量数据集的发展提出了展望,为未来研究提供了参考。 展开更多
关键词 人工智能 高质量数据集 数据驱动 智能制造 深度学习 大数据
在线阅读 下载PDF
基于MARL-MHSA架构的水下仿生机器人协同围捕策略:数据驱动建模与分布式策略优化
13
作者 冯育凯 吴正兴 谭民 《自动化学报》 北大核心 2025年第10期2269-2282,共14页
针对水下仿生机器人集群的围捕−逃逸问题,提出一种融合多头自注意力机制的多智能体强化学习策略训练框架.该框架构建一种基于多头自注意力机制的中心化决策网络,在提升策略训练效率的同时,保留分布式决策架构,有效增强个体的自主决策能... 针对水下仿生机器人集群的围捕−逃逸问题,提出一种融合多头自注意力机制的多智能体强化学习策略训练框架.该框架构建一种基于多头自注意力机制的中心化决策网络,在提升策略训练效率的同时,保留分布式决策架构,有效增强个体的自主决策能力与群体间的协同性能.此外,针对策略由仿真环境向真实场景迁移过程中动力学建模不精确、感知−动作存在偏差等挑战,构建一种由真实场景机器鱼运动数据驱动的仿真环境,有效提升了策略的可迁移性与部署的可靠性.通过仿真与真实场景实验验证了所提方法在水下仿生机器人协同围捕任务中的有效性.相较于多智能体近端策略优化算法,该方法可使平均围捕成功率提升24.3%、平均围捕步长减少30.9%,显著提升了水下仿生机器人集群的协同围捕效率.该研究为多智能体强化学习在水下仿生机器人集群任务中的应用提供了新的思路和技术支持. 展开更多
关键词 仿生机器鱼 围捕−逃逸问题 深度强化学习 数据驱动建模 注意力机制
在线阅读 下载PDF
基于数据驱动的地下水-地表水耦合模拟
14
作者 孙俊峰 胡浩鑫 曾献奎 《水文》 北大核心 2025年第2期15-22,共8页
地下水-地表水耦合模型是定量刻画地下水地表水相互作用及流域水文循环的重要工具。随着人工智能的兴起,基于数据驱动的机器学习方法在地表水或地下水模拟领域取得重要进展,克服了传统水文数值模型面临的困难。然而,目前缺乏基于数据驱... 地下水-地表水耦合模型是定量刻画地下水地表水相互作用及流域水文循环的重要工具。随着人工智能的兴起,基于数据驱动的机器学习方法在地表水或地下水模拟领域取得重要进展,克服了传统水文数值模型面临的困难。然而,目前缺乏基于数据驱动方法的地下水-地表水耦合模型。提出基于深度学习的地下水-地表水耦合模拟技术,利用多任务卷积神经网络(CNN)和长短期记忆神经网络(LSTM)方法,以美国加利福尼亚州的Sagehen流域为研究区,构建基于数据驱动的地下水-地表水耦合模型预测河流日径流量和地下水位。结果表明,基于CNN和LSTM建立的深度学习模型对研究区地表径流量模拟的纳什效率系数(NSE)为0.8094,对地下水位模拟的NSE高于0.81,模拟效果较好。研究成果可为流域地下水-地表水耦合模拟提供新思路。 展开更多
关键词 数据驱动 深度学习 地下水与地表水 耦合模型
在线阅读 下载PDF
基于CNN-GRU-MHA的CFB机组污染物排放动态预测 被引量:1
15
作者 王勇权 高明明 +2 位作者 王唯铧 张鹏新 成永强 《热力发电》 北大核心 2025年第7期33-42,共10页
SO_(2)与NO_(x)排放质量浓度的精准预测可以有效指导污染物排放控制,对CFB机组环保运行具有重要意义。以某330 MW CFB机组为研究对象,采用Pearson相关系数实现输入变量筛选,应用四分位距(interquartile range,IQR)方法筛选并替换异常值... SO_(2)与NO_(x)排放质量浓度的精准预测可以有效指导污染物排放控制,对CFB机组环保运行具有重要意义。以某330 MW CFB机组为研究对象,采用Pearson相关系数实现输入变量筛选,应用四分位距(interquartile range,IQR)方法筛选并替换异常值,同时进行归一化,完成数据预处理;随后,通过卷积神经网络(convolutional neural network,CNN)提取输入变量的特征,进入门循环单元(gated recurrent unit,GRU)处理时间序列特征,并引入多头自注意力(multi-head attention,MHA)机制捕捉特征之间的重要关系,经训练后反归一化得到模型输出;最后,使用平均绝对误差MAE、平均绝对百分比误差MAPE和决定系数R^(2)评估测试集的结果。结果表明,该CNN-GRU-MHA模型能够较为准确地预测CFB机组的污染物排放质量浓度。消融实验与模型对比证明了该模型的优越性能。该CNN-GRU-MHA模型可以实现CFB机组污染物排放质量浓度的监测与优化指导,从而使电厂及时调整运行参数,确保污染物排放达标。 展开更多
关键词 CFB 污染物排放预测 深度学习 数据驱动
在线阅读 下载PDF
BLR-MATD3双数据驱动协同的配电网无功电压控制策略 被引量:1
16
作者 赵为光 张雨欣 +2 位作者 王雨楠 张帅 张佳瑞 《黑龙江电力》 2025年第2期146-154,共9页
大量分布式可再生能源的接入,使配电网面临电压越限、网损增加等挑战。多智能体深度强化学习的配电网实时电压控制方法,可有效协同光伏逆变器无功参与调压,但针对配电网的感知度有限,物理参数的不准确、不可知情况,难以使用常规潮流方... 大量分布式可再生能源的接入,使配电网面临电压越限、网损增加等挑战。多智能体深度强化学习的配电网实时电压控制方法,可有效协同光伏逆变器无功参与调压,但针对配电网的感知度有限,物理参数的不准确、不可知情况,难以使用常规潮流方程线性化方法。此外,面对大规模配网复杂场景时,复杂的交流潮流环境模型也会弱化强化学习算法寻优的计算效率。基于此,提出一种贝叶斯线性回归(BLR)和多智能体双延迟深度确定性策略梯度(MATD3)双数据驱动方法协同的电压控制策略。采用BLR方法建立适于强化学习环境架构的配电网潮流计算模型,将无功电压控制问题建模为分布式部分可观测马尔可夫决策过程,采用MATD3算法求解,使用离线训练-在线执行的模式实现不同区域光伏逆变器的无功协同控制。经IEEE节点系统仿真比较验证,所提方法达到较好的控制效果,具有较好的实时性和泛化能力。 展开更多
关键词 电压调节 贝叶斯线性回归 强化学习 数据驱动 光伏逆变器
在线阅读 下载PDF
Predictive Analytics for Project Risk Management Using Machine Learning
17
作者 Sanjay Ramdas Bauskar Chandrakanth Rao Madhavaram +3 位作者 Eswar Prasad Galla Janardhana Rao Sunkara Hemanth Kumar Gollangi Shravan Kumar Rajaram 《Journal of Data Analysis and Information Processing》 2024年第4期566-580,共15页
Risk management is relevant for every project that which seeks to avoid and suppress unanticipated costs, basically calling for pre-emptive action. The current work proposes a new approach for handling risks based on ... Risk management is relevant for every project that which seeks to avoid and suppress unanticipated costs, basically calling for pre-emptive action. The current work proposes a new approach for handling risks based on predictive analytics and machine learning (ML) that can work in real-time to help avoid risks and increase project adaptability. The main research aim of the study is to ascertain risk presence in projects by using historical data from previous projects, focusing on important aspects such as time, task time, resources and project results. t-SNE technique applies feature engineering in the reduction of the dimensionality while preserving important structural properties. This process is analysed using measures including recall, F1-score, accuracy and precision measurements. The results demonstrate that the Gradient Boosting Machine (GBM) achieves an impressive 85% accuracy, 82% precision, 85% recall, and 80% F1-score, surpassing previous models. Additionally, predictive analytics achieves a resource utilisation efficiency of 85%, compared to 70% for traditional allocation methods, and a project cost reduction of 10%, double the 5% achieved by traditional approaches. Furthermore, the study indicates that while GBM excels in overall accuracy, Logistic Regression (LR) offers more favourable precision-recall trade-offs, highlighting the importance of model selection in project risk management. 展开更多
关键词 Predictive Analytics Project Risk Management DECISION-MAKING data-driven Strategies Risk Prediction Machine learning Historical data
在线阅读 下载PDF
基于数据-物理模型融合驱动的原始-对偶自监督学习最优潮流求解方法
18
作者 翁宗龙 李滨 +2 位作者 肖佳文 张佳乐 白晓清 《电力自动化设备》 北大核心 2025年第4期202-208,共7页
随着新型电力系统的构建以及清洁低碳能源体系的转变,高维强非线性、高不确定性、强耦合等特点使得现有最优潮流计算的复杂度急剧增加。基于数据-物理模型融合驱动,提出一种内嵌交流潮流方程的原始-对偶自监督学习的最优潮流求解方法。... 随着新型电力系统的构建以及清洁低碳能源体系的转变,高维强非线性、高不确定性、强耦合等特点使得现有最优潮流计算的复杂度急剧增加。基于数据-物理模型融合驱动,提出一种内嵌交流潮流方程的原始-对偶自监督学习的最优潮流求解方法。建立原始神经网络和对偶神经网络,并采用类增广拉格朗日的方法进行联合训练。原始神经网络仅预测所有节点的电压,在该训练网络中内嵌交流潮流方程,以计算发电机的有功和无功出力;对偶神经网络预测拉格朗日乘子估计值。仿真结果表明,所提方法不仅关注大量数据的底层特征,还优化解的质量,有助于更好地探索数据的结构和特性。同时,该方法无须预处理标签样本数据集,其计算精度和可信度优于数据驱动方法,其计算速度比传统物理模型驱动方法快数十倍。 展开更多
关键词 数据-物理融合驱动 类增广拉格朗日 原始-对偶自监督学习 最优潮流 内嵌交流潮流方程
在线阅读 下载PDF
电力系统高危N-k故障的高危断面辨识与保护配置
19
作者 黄子书 蔡晔 +1 位作者 孙溶佐 谭玉东 《综合智慧能源》 2025年第9期1-9,共9页
针对电力系统N-k连锁故障源发场景多样、故障传播路径复杂、保护策略实施对象难以界定等问题,提出一种结合极限梯度提升(XGBoost)与贝叶斯超参数优化的高危断面辨识与保护配置模型。通过搭建高危N-k故障集,随机模拟0.1~10.0负载率下的... 针对电力系统N-k连锁故障源发场景多样、故障传播路径复杂、保护策略实施对象难以界定等问题,提出一种结合极限梯度提升(XGBoost)与贝叶斯超参数优化的高危断面辨识与保护配置模型。通过搭建高危N-k故障集,随机模拟0.1~10.0负载率下的连锁故障,构建以线路负载率为输入、剩余负荷为输出目标的连锁故障数据集;使用贝叶斯优化算法调整XGBoost模型超参数,选择最优参数组合;辨识高危N-k故障场景下的保护资源配置策略。在IEEE39节点系统上的仿真结果表明,对高危N-k故障集中88%的场景,通过调整高危断面3条线路的潮流承载能力,系统剩余负荷可维持在80%以上。 展开更多
关键词 连锁故障 断面辨识 贝叶斯超参数优化 数据驱动 XGBoost算法 机器学习
在线阅读 下载PDF
Advancing Material Stability Prediction: Leveraging Machine Learning and High-Dimensional Data for Improved Accuracy
20
作者 Aasim Ayaz Wani 《Materials Sciences and Applications》 2025年第2期79-105,共27页
Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are a... Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis. 展开更多
关键词 High-Throughput Screening for Material Discovery Machine learning data-driven Structural Stability Analysis AI for Chemical Space Exploration Interpretable ML Models for Material Stability Thermodynamic Property Prediction Using AI
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部