Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ...Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.展开更多
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This...The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This era integrates biotechnology,artificial intelligence(AI),and big data information technology.In contrast,China is still in a transition period between stages 2.0 and 3.0,which primarily relies on conventional selection and molecular breeding.In the context of increasingly complex international situations,accurately identifying core issues in China's seed industry innovation and seizing the frontier of international seed technology are strategically important.These efforts are essential for ensuring food security and revitalizing the seed industry.This paper systematically analyzes the characteristics of crop breeding data from artificial selection to intelligent design breeding.It explores the applications and development trends of AI and big data in modern crop breeding from several key perspectives.These include highthroughput phenotype acquisition and analysis,multiomics big data database and management system construction,AI-based multiomics integrated analysis,and the development of intelligent breeding software tools based on biological big data and AI technology.Based on an in-depth analysis of the current status and challenges of China's seed industry technology development,we propose strategic goals and key tasks for China's new generation of AI and big data-driven intelligent design breeding.These suggestions aim to accelerate the development of an intelligent-driven crop breeding engineering system that features large-scale gene mining,efficient gene manipulation,engineered variety design,and systematized biobreeding.This study provides a theoretical basis and practical guidance for the development of China's seed industry technology.展开更多
As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and oper...As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].展开更多
On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th Nation...On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities.展开更多
Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental chall...Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region.展开更多
The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facili...The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.展开更多
Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine learning(ML)models.In this study,regression-based missing data imputation method using a light grad...Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine learning(ML)models.In this study,regression-based missing data imputation method using a light gradient boosting machine(LGBM)algorithm was employed to impute more than 60%of the missing data,establishing a radionuclide diffusion dataset containing 16 input features and 813 instances.The effective diffusion coefficient(D_(e))was predicted using ten ML models.The predictive accuracy of the ensemble meta-models,namely LGBM-extreme gradient boosting(XGB)and LGBM-categorical boosting(CatB),surpassed that of the other ML models,with R^(2)values of 0.94.The models were applied to predict the D_(e)values of EuEDTA^(−)and HCrO_(4)^(−)in saturated compacted bentonites at compactions ranging from 1200 to 1800 kg/m^(3),which were measured using a through-diffusion method.The generalization ability of the LGBM-XGB model surpassed that of LGB-CatB in predicting the D_(e)of HCrO_(4)^(−).Shapley additive explanations identified total porosity as the most significant influencing factor.Additionally,the partial dependence plot analysis technique yielded clearer results in the univariate correlation analysis.This study provides a regression imputation technique to refine radionuclide diffusion datasets,offering deeper insights into analyzing the diffusion mechanism of radionuclides and supporting the safety assessment of the geological disposal of high-level radioactive waste.展开更多
In this study,we developed a high-resolution(3 arcsec,approximately 90 m)V_(S30) map and associated open-access dataset for the 140 km×200 km region affected by the January 2025 M6.8 Dingri Xizang,China earthquak...In this study,we developed a high-resolution(3 arcsec,approximately 90 m)V_(S30) map and associated open-access dataset for the 140 km×200 km region affected by the January 2025 M6.8 Dingri Xizang,China earthquake.This map provides a significantly finer resolution compared to existing V_(S30) maps,which typically use a 30 arcsec grid.The V_(S30) values were estimated using the Cokriging-based V_(S30) proxy model(SCK model),which integrates V_(S30) measurements as primary constraints and utilizes topographic slope as a secondary parameter.The findings indicate that the V_(S30) values range from 200 to 250 m/s in the sedimentary deposit areas near the earthquake’s epicenter and from 400 to 600 m/s in the surrounding mountainous regions.This study showcases the capability of the SCK model to efficiently generate V_(S30) estimations across various spatial resolutions and demonstrates its effectiveness in producing reliable estimations in data-sparse regions.展开更多
We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensiv...We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensively evaluate the performance of the model by power spectral comparisons,correlation analyses,sensitivity matrix assessments,and comparisons with existing lithospheric field models.Results showed that using near east–west gradient data from MSS-1 significantly enhances the model correlation in the spherical harmonic degree(N) range of 45–60 while also mitigating the decline in correlation at higher degrees(N > 60).Furthermore,the unique orbital characteristics of MSS-1 enable its gradient data to provide substantial contributions to modeling in the mid-to low-latitude regions.With continued data acquisition from MSS-1 and further optimization of data processing methods,the performance of the model is expected to improve.展开更多
This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model...This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.展开更多
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th...Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.展开更多
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in...Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.展开更多
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud...With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.展开更多
We study the two-dimensional(2D)Cauchy problem of nonhomogeneous Boussinesq system for magnetohydrodynamics convection without heat diffusion in the whole plane.Based on delicate weighted estimates,we derive the globa...We study the two-dimensional(2D)Cauchy problem of nonhomogeneous Boussinesq system for magnetohydrodynamics convection without heat diffusion in the whole plane.Based on delicate weighted estimates,we derive the global existence and uniqueness of strong solutions.In particular,the initial data can be arbitrarily large and the initial density may contain vacuum states and even have compact support.展开更多
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.
基金partially supported by the Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences(KJCX20240406)the Beijing Natural Science Foundation(JQ24037)+1 种基金the National Natural Science Foundation of China(32330075)the Earmarked Fund for China Agriculture Research System(CARS-02 and CARS-54)。
文摘The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This era integrates biotechnology,artificial intelligence(AI),and big data information technology.In contrast,China is still in a transition period between stages 2.0 and 3.0,which primarily relies on conventional selection and molecular breeding.In the context of increasingly complex international situations,accurately identifying core issues in China's seed industry innovation and seizing the frontier of international seed technology are strategically important.These efforts are essential for ensuring food security and revitalizing the seed industry.This paper systematically analyzes the characteristics of crop breeding data from artificial selection to intelligent design breeding.It explores the applications and development trends of AI and big data in modern crop breeding from several key perspectives.These include highthroughput phenotype acquisition and analysis,multiomics big data database and management system construction,AI-based multiomics integrated analysis,and the development of intelligent breeding software tools based on biological big data and AI technology.Based on an in-depth analysis of the current status and challenges of China's seed industry technology development,we propose strategic goals and key tasks for China's new generation of AI and big data-driven intelligent design breeding.These suggestions aim to accelerate the development of an intelligent-driven crop breeding engineering system that features large-scale gene mining,efficient gene manipulation,engineered variety design,and systematized biobreeding.This study provides a theoretical basis and practical guidance for the development of China's seed industry technology.
基金supported by National Natural Science Foundation of China(Grants 72474022,71974011,72174022,71972012,71874009)"BIT think tank"Promotion Plan of Science and Technology Innovation Program of Beijing Institute of Technology(Grants 2024CX14017,2023CX13029).
文摘As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].
文摘On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities.
文摘Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region.
文摘The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.
基金supported by the National Natural Science Foundation of China(No.12475340 and 12375350)Special Branch project of South Taihu Lakethe Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202456326).
文摘Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine learning(ML)models.In this study,regression-based missing data imputation method using a light gradient boosting machine(LGBM)algorithm was employed to impute more than 60%of the missing data,establishing a radionuclide diffusion dataset containing 16 input features and 813 instances.The effective diffusion coefficient(D_(e))was predicted using ten ML models.The predictive accuracy of the ensemble meta-models,namely LGBM-extreme gradient boosting(XGB)and LGBM-categorical boosting(CatB),surpassed that of the other ML models,with R^(2)values of 0.94.The models were applied to predict the D_(e)values of EuEDTA^(−)and HCrO_(4)^(−)in saturated compacted bentonites at compactions ranging from 1200 to 1800 kg/m^(3),which were measured using a through-diffusion method.The generalization ability of the LGBM-XGB model surpassed that of LGB-CatB in predicting the D_(e)of HCrO_(4)^(−).Shapley additive explanations identified total porosity as the most significant influencing factor.Additionally,the partial dependence plot analysis technique yielded clearer results in the univariate correlation analysis.This study provides a regression imputation technique to refine radionuclide diffusion datasets,offering deeper insights into analyzing the diffusion mechanism of radionuclides and supporting the safety assessment of the geological disposal of high-level radioactive waste.
基金supported by the National Natural Science Foundation of China(No.42120104002).
文摘In this study,we developed a high-resolution(3 arcsec,approximately 90 m)V_(S30) map and associated open-access dataset for the 140 km×200 km region affected by the January 2025 M6.8 Dingri Xizang,China earthquake.This map provides a significantly finer resolution compared to existing V_(S30) maps,which typically use a 30 arcsec grid.The V_(S30) values were estimated using the Cokriging-based V_(S30) proxy model(SCK model),which integrates V_(S30) measurements as primary constraints and utilizes topographic slope as a secondary parameter.The findings indicate that the V_(S30) values range from 200 to 250 m/s in the sedimentary deposit areas near the earthquake’s epicenter and from 400 to 600 m/s in the surrounding mountainous regions.This study showcases the capability of the SCK model to efficiently generate V_(S30) estimations across various spatial resolutions and demonstrates its effectiveness in producing reliable estimations in data-sparse regions.
基金the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, and 41404053)the Macao Foundation and the preresearch project of Civil Aerospace Technologies (Nos. D020308 and D020303)funded by China’s National Space Administration, the Specialized Research Fund for State Key Laboratories。
文摘We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensively evaluate the performance of the model by power spectral comparisons,correlation analyses,sensitivity matrix assessments,and comparisons with existing lithospheric field models.Results showed that using near east–west gradient data from MSS-1 significantly enhances the model correlation in the spherical harmonic degree(N) range of 45–60 while also mitigating the decline in correlation at higher degrees(N > 60).Furthermore,the unique orbital characteristics of MSS-1 enable its gradient data to provide substantial contributions to modeling in the mid-to low-latitude regions.With continued data acquisition from MSS-1 and further optimization of data processing methods,the performance of the model is expected to improve.
基金2024 Anqing Normal University University-Level Key Project(ZK2024062D)。
文摘This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.
基金supported By Grant (PLN2022-14) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)。
文摘Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
基金supported by a Korean Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure and Transport(grant no.RS-2023-00239464).
文摘Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00399401,Development of Quantum-Safe Infrastructure Migration and Quantum Security Verification Technologies).
文摘With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.
文摘We study the two-dimensional(2D)Cauchy problem of nonhomogeneous Boussinesq system for magnetohydrodynamics convection without heat diffusion in the whole plane.Based on delicate weighted estimates,we derive the global existence and uniqueness of strong solutions.In particular,the initial data can be arbitrarily large and the initial density may contain vacuum states and even have compact support.