Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR...Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR(DIM-Li DAR)system).By designing and simulating the optical system of atmospheric turbulence detection Li DAR,the basic optical imaging accuracy has been determined.展开更多
单木分割在森林结构分析、林木参数提取以及森林生物量反演中具有重要作用。激光雷达(Light Detection and Ranging,LiDAR)作为一种低成本、高效率的数据源,为森林单木分割研究提供了坚实的数据基础。目前的单木分割研究主要集中在结构...单木分割在森林结构分析、林木参数提取以及森林生物量反演中具有重要作用。激光雷达(Light Detection and Ranging,LiDAR)作为一种低成本、高效率的数据源,为森林单木分割研究提供了坚实的数据基础。目前的单木分割研究主要集中在结构较为简单的森林区域,通常通过考虑点云之间的空间关系,制定合适的判别准则来实现单木的分割。然而,针对结构复杂的森林,现有的单木分割算法研究相对较少。提出了一种融合核密度估计、数字表面模型和K-means聚类等方法的单木分割算法。研究结果表明:以甘肃省甘南藏族自治区为研究区,对西北云杉林进行单木分割时,该方法能够显著提高人工云杉林与天然云杉林的分割精度。与传统的K-means聚类单木分割算法相比,该方法的整体棵数查全率分别提高了32%和15%,查准率分别提高了51%和27%,分别达到了83%和89%的查全率,以及92%和55%的查准率。这一方法为机载LiDAR在森林生态应用中的进一步应用提供了新的技术支持,特别为复杂林型结构中的单木分割问题提供了一种高效、简便的解决方案。展开更多
The integration of the dynamic adaptive routing(DAR)algorithm in unmanned aerial vehicle(UAV)networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6...The integration of the dynamic adaptive routing(DAR)algorithm in unmanned aerial vehicle(UAV)networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6G.DAR’s innovative framework incorporates real-time path adjustments,energy-aware routing,and predictive models,optimizing reliability,latency,and energy efficiency in UAV operations.This study demonstrated DAR’s superior performance in dynamic,large-scale environments,proving its adaptability and scalability for real-time applications.As 6G networks evolve,challenges such as bandwidth demands,global spectrum management,security vulnerabilities,and financial feasibility become prominent.DAR aligns with these demands by offering robust solutions that enhance data transmission while ensuring network reliability.However,obstacles like global route optimization and signal interference in urban areas necessitate further refinement.Future directions should explore hybrid approaches,the integration of machine learning,and comprehensive real-world testing to maximize DAR’s capabilities.The findings underscore DAR’s pivotal role in enabling efficient and sustainable UAV communication systems,contributing to the broader landscape of wireless technology and laying a foundation for the seamless transition to 6G networks.展开更多
Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitor...Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.展开更多
针对当前从三维激光点云中提取海岸线方法的不足,提出了一种基于点云栅格化的海岸线提取方法。首先对点云进行去噪等数据预处理,然后直接将其栅格化生成更为平滑的海岸地形,最后采用中国近海海域潮汐精密模型,从栅格海岸地形中提取基于...针对当前从三维激光点云中提取海岸线方法的不足,提出了一种基于点云栅格化的海岸线提取方法。首先对点云进行去噪等数据预处理,然后直接将其栅格化生成更为平滑的海岸地形,最后采用中国近海海域潮汐精密模型,从栅格海岸地形中提取基于平均大潮高潮面MHWS(Mean High Water Springs)海岸线。实验表明:此处所提出的点云栅格化方法较当前方法提取的海岸线更可靠、合理,提取效率更高,同时也可用于其他辅助岸线的提取。展开更多
基金jointly funded by the National Science Foundation of China(No.42405069)the University Natural Sciences Research Project of Anhui Province(Nos.2023AH052201 and 2023AH052184)+1 种基金the 2023 Talent Research Fund Project of Hefei University(No.23RC01)the Technical Development Project of Hefei University(Nos.902/22050124128,902/22050124148 and 902/22050124250)。
文摘Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR(DIM-Li DAR)system).By designing and simulating the optical system of atmospheric turbulence detection Li DAR,the basic optical imaging accuracy has been determined.
文摘单木分割在森林结构分析、林木参数提取以及森林生物量反演中具有重要作用。激光雷达(Light Detection and Ranging,LiDAR)作为一种低成本、高效率的数据源,为森林单木分割研究提供了坚实的数据基础。目前的单木分割研究主要集中在结构较为简单的森林区域,通常通过考虑点云之间的空间关系,制定合适的判别准则来实现单木的分割。然而,针对结构复杂的森林,现有的单木分割算法研究相对较少。提出了一种融合核密度估计、数字表面模型和K-means聚类等方法的单木分割算法。研究结果表明:以甘肃省甘南藏族自治区为研究区,对西北云杉林进行单木分割时,该方法能够显著提高人工云杉林与天然云杉林的分割精度。与传统的K-means聚类单木分割算法相比,该方法的整体棵数查全率分别提高了32%和15%,查准率分别提高了51%和27%,分别达到了83%和89%的查全率,以及92%和55%的查准率。这一方法为机载LiDAR在森林生态应用中的进一步应用提供了新的技术支持,特别为复杂林型结构中的单木分割问题提供了一种高效、简便的解决方案。
文摘The integration of the dynamic adaptive routing(DAR)algorithm in unmanned aerial vehicle(UAV)networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6G.DAR’s innovative framework incorporates real-time path adjustments,energy-aware routing,and predictive models,optimizing reliability,latency,and energy efficiency in UAV operations.This study demonstrated DAR’s superior performance in dynamic,large-scale environments,proving its adaptability and scalability for real-time applications.As 6G networks evolve,challenges such as bandwidth demands,global spectrum management,security vulnerabilities,and financial feasibility become prominent.DAR aligns with these demands by offering robust solutions that enhance data transmission while ensuring network reliability.However,obstacles like global route optimization and signal interference in urban areas necessitate further refinement.Future directions should explore hybrid approaches,the integration of machine learning,and comprehensive real-world testing to maximize DAR’s capabilities.The findings underscore DAR’s pivotal role in enabling efficient and sustainable UAV communication systems,contributing to the broader landscape of wireless technology and laying a foundation for the seamless transition to 6G networks.
文摘Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.
文摘针对当前从三维激光点云中提取海岸线方法的不足,提出了一种基于点云栅格化的海岸线提取方法。首先对点云进行去噪等数据预处理,然后直接将其栅格化生成更为平滑的海岸地形,最后采用中国近海海域潮汐精密模型,从栅格海岸地形中提取基于平均大潮高潮面MHWS(Mean High Water Springs)海岸线。实验表明:此处所提出的点云栅格化方法较当前方法提取的海岸线更可靠、合理,提取效率更高,同时也可用于其他辅助岸线的提取。