The emerging applications of composite gels as thermal interface ma-terials(TIMs)for chip heat dissipation in intelligent vehicle and wear-able devices require high thermal conductivity and remarkable damp-ing propert...The emerging applications of composite gels as thermal interface ma-terials(TIMs)for chip heat dissipation in intelligent vehicle and wear-able devices require high thermal conductivity and remarkable damp-ing properties.However,thermal conductivity and damping proper-ties are usually correlated and coupled each other.Here,inspired by Maxwell theory and adhesion mechanism of gecko’s setae,we present a strategy to fabricate polydimethylsiloxane-based composite gels in-tegrating high thermal conductivity and remarkable damping prop-erties over a broad frequency and temperature range.The multiple relaxation modes of dangling chains and the dynamic interaction be-tween the dangling chains and aluminum fillers can efficiently dis-sipate the vibration energy,endowing the composite gels with ultra-high damping property(tanδ>0.3)over a broad frequency(0.01-100 Hz)and temperature range(-50-150°C),which exceeds typi-cal state-of-the-art damping materials.The dangling chains also com-fort to the interfaces between polymer matrix and aluminum via van der Waals interaction,resulting in high thermal conductivity(4.72±0.04 W m-1 K-1).Using the polydimethylsiloxane-based composite gel as TIMs,we demonstrate effective heat dissipation in chip oper-ating under vigorous vibrations.We believe that our strategy could be applied to a wide range of composite gels and lead to the devel-opment of high-performance composite gels as TIMs for chip heat dissipation.展开更多
基金This work was supported by the National Key Research and Development Program of China(No.2020YFB040176)National Natural Science Foundation of China(No.52073300 and 62104161)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019354)Guangdong Province Key Field R&D Program Project(No.2020B010190004),Shenzhen Science and Technology Research Funding(No.JCYJ20200109114401708)Key Project of Science and Technol-ogy of Changsha(kq2102005)Guangdong Provincial Key Laboratory(2014B030301014).
文摘The emerging applications of composite gels as thermal interface ma-terials(TIMs)for chip heat dissipation in intelligent vehicle and wear-able devices require high thermal conductivity and remarkable damp-ing properties.However,thermal conductivity and damping proper-ties are usually correlated and coupled each other.Here,inspired by Maxwell theory and adhesion mechanism of gecko’s setae,we present a strategy to fabricate polydimethylsiloxane-based composite gels in-tegrating high thermal conductivity and remarkable damping prop-erties over a broad frequency and temperature range.The multiple relaxation modes of dangling chains and the dynamic interaction be-tween the dangling chains and aluminum fillers can efficiently dis-sipate the vibration energy,endowing the composite gels with ultra-high damping property(tanδ>0.3)over a broad frequency(0.01-100 Hz)and temperature range(-50-150°C),which exceeds typi-cal state-of-the-art damping materials.The dangling chains also com-fort to the interfaces between polymer matrix and aluminum via van der Waals interaction,resulting in high thermal conductivity(4.72±0.04 W m-1 K-1).Using the polydimethylsiloxane-based composite gel as TIMs,we demonstrate effective heat dissipation in chip oper-ating under vigorous vibrations.We believe that our strategy could be applied to a wide range of composite gels and lead to the devel-opment of high-performance composite gels as TIMs for chip heat dissipation.