期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Damage effectiveness characterization model of laser weapon systems under the impact of spatial position and atmospheric condition
1
作者 LIU Wei ZHANG Lin +3 位作者 YUN Tao MENG Xianliang ZHANG Bo SONG Yafei 《Journal of Systems Engineering and Electronics》 2025年第5期1281-1295,共15页
The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.Howe... The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators. 展开更多
关键词 laser weapon system damage effectiveness atmospheric transmission thermal damage anti-unmanned aerial vehicle
在线阅读 下载PDF
Damage effectiveness assessment method for anti-ship missiles based on double hierarchy linguistic term sets and evidence theory 被引量:4
2
作者 YAO Tianle WANG Weili +2 位作者 MIAO Run DONG Jun YAN Xuefei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第2期393-405,共13页
The research on the damage effectiveness assessment of anti-ship missiles involves system science and weapon science, and has essential strategic research significance. With comprehensive analysis of the specific proc... The research on the damage effectiveness assessment of anti-ship missiles involves system science and weapon science, and has essential strategic research significance. With comprehensive analysis of the specific process of the damage assessment process of anti-missile against ships, a synthetic damage effectiveness assessment process is proposed based on the double hierarchy linguistic term set and the evidence theory. In order to improve the accuracy of the expert ’s assessment information, double hierarchy linguistic terms are used to describe the assessment opinions of experts. In order to avoid the loss of experts ’ original information caused by information fusion rules, the evidence theory is used to fuse the assessment information of various experts on each case. Good stability of the assessment process can be reflected through sensitivity analysis, and the fluctuation of a certain parameter does not have an excessive influence on the assessment results. The assessment process is accurate enough to be reflected through comparative analysis and it has a good advantage in damage effectiveness assessment. 展开更多
关键词 anti-ship missile damage effect assessment linguistic term set evidence reasoning
在线阅读 下载PDF
Penetration-deflagration coupling damage performance of rod-like reactive shaped charge penetrator impacting thick steel plates 被引量:1
3
作者 Tao Sun Haifu Wang +3 位作者 Shipeng Wang Jie Gong Wenhao Qiu Yuanfeng Zheng 《Defence Technology(防务技术)》 2025年第7期152-164,共13页
The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagra... The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly. 展开更多
关键词 Reactive materials Al-PTFE composites Penetration model damage effect
在线阅读 下载PDF
Comparison of displacement damage effects on the dark signal in CMOS image sensors induced by CSNS back-n and XAPR neutrons 被引量:1
4
作者 Yuan-Yuan Xue Zu-Jun Wang +3 位作者 Wu-Ying Ma Min-Bo Liu Bao-Ping He Shi-Long Gou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第10期29-40,共12页
This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the Chi... This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values. 展开更多
关键词 Displacement damage effects CMOS image sensor(CIS) CSNS back-n XAPR neutrons Geant4 Dark signal non-uniformity(DSNU)
在线阅读 下载PDF
Exploring alkali-source,pore-filling and cementation damage effects in cemented clay with typical industrial waste binders
5
作者 Xing Wan Jianwen Ding +2 位作者 Jianhua Wang Pengju Gao Xia Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期5209-5220,共12页
Various industrial waste binders(IWBs)are being recycled in soil stabilization to save cement consumption.However,the coupled effects brought out by combined IWBs on stabilized soils are still unclear.IWBs are categor... Various industrial waste binders(IWBs)are being recycled in soil stabilization to save cement consumption.However,the coupled effects brought out by combined IWBs on stabilized soils are still unclear.IWBs are categorized into two typical categories(IWB-A and IWB-B)referring to their chemical role in this study.The alkali-source effect,pore-filling effect and cementation damage effect by IWBs in soil stabilization are explored.A series of mechanical and microscopic tests is performed on stabilized clay with different proportions of IWB-A and IWB-B.Moreover,initial water contents and cement contents of cement-stabilized clay are varied to examine the evolution of coupled effect with void ratio and cementation level.The results indicate that the alkali-source effect strengthens the cementation bonds and increases the early strength by 0.5e1.3 times,whereas the pore-filling effect improves the microfabric especially for the specimen with a large void ratio.The alkali-source effect increases soil cohesion cu at the pre-yield stage,and the pore-filling effect increases frictional angle 4u at the post-yield stage.The cementation damage effect is remarkable at a low void ratio,which may result in many extruded pores among soil aggregates.The strength evolution with IWB proportions can be well stimulated by considering the coupled alkali-source effect,pore-filling effect and cementation damage effect.The optimal proportion of IWBs corresponds to an optimal combination of coupled effect. 展开更多
关键词 Cement-stabilized clay Industrial waste binder(IWB) Alkali-source effect Pore-filling effect Cementation damage effect
在线阅读 下载PDF
Displacement damage effects in MoS_(2)-based electronics
6
作者 Kaiyue He Zhanqi Li +7 位作者 Taotao Li Yifu Sun Shitong Zhu Chao Wu Huiping Zhu Peng Lu Xinran Wang Maguang Zhu 《Journal of Semiconductors》 EI CAS CSCD 2024年第12期152-158,共7页
Owing to the unique characteristics of ultra-thin body and nanoscale sensitivity volume,MoS_(2)-based field-effect tran-sistors(FETs)are regarded as optimal components for radiation-hardened integrated circuits(ICs),w... Owing to the unique characteristics of ultra-thin body and nanoscale sensitivity volume,MoS_(2)-based field-effect tran-sistors(FETs)are regarded as optimal components for radiation-hardened integrated circuits(ICs),which is exponentially grow-ing demanded especially in the fields of space exploration and the nuclear industry.Many researches on MoS_(2)-based radiation tolerance electronics focused on the total ionizing dose(TID)effect,while few works concerned the displacement damage(DD)effects,which is more challenging to measure and more crucial for practical applications.We first conducted measurements to assess the DD effects of MoS_(2) FETs,and then presented the stopping and ranges of ions in matter(SRIM)simulation to analysis the DD degradation mechanism in MoS_(2) electronics.The monolayer MoS_(2)-based FETs exhibit DD radiation tolerance up to 1.56×1013 MeV/g,which is at least two order of magnitude than that in conventional radiation hardened ICs.The exceptional DD radiation tolerance will significantly enhance the deployment of MoS_(2) integrated circuits in environments characterized by high-energy solar and cosmic radiation exposure. 展开更多
关键词 MoS_(2) field effect transistor displacement damage effect radiation hardness proton radiation
在线阅读 下载PDF
Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact 被引量:18
7
作者 Hai-fu Wang Jian-wen Xie +2 位作者 Chao Ge Huan-guo Guo Yuan-feng Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期599-608,共10页
Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel t... Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel tank is a rectangular structure,welded by six pieces of 2024 aluminum plate with a thickness of 6 mm,and filled with RP-3 aviation kerosene.Experimental results show that the kerosene is ignited by the RMP impact at a velocity above 1062 m/s,and a novel interior ignition phenomenon which is closely related to the rupture effect of the fuel tank is observed.However,the traditional steel projectile with the same mass and dimension requires a velocity up to 1649 m/s to ignite the kerosene.Based on the experimental results,the radial pressure field is considered to be the main reason for the shear failure of weld.For mechanism considerations,the chemical energy released by the RMP enhances the hydrodynamic ram(HRAM)effect and provides additional ignition sources inside the fuel tank,thereby enhancing both rupture and ignition effects.Moreover,to further understand the enhanced ignition effect of RMP,the reactive debris temperature inside the kerosene is analyzed theoretically.The initiated reactive debris with high temperature provides effective interior ignition sources to ignite the kerosene,resulting in the enhanced ignition of the kerosene. 展开更多
关键词 Reactive material projectile Fuel tank Enhanced damage effect Enhanced ignition mechanism Impact behavior
在线阅读 下载PDF
Synthetic damage effect assessment through evidential reasoning approach and neural fuzzy inference:Application in ship target 被引量:6
8
作者 Tianle YAO Run MIAO +4 位作者 Weili WANG Zhirong LI Jun DONG Yajuan GU Xuefei YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期143-157,共15页
The damage effect assessment of anti-ship missiles combines system science and weapon science,which can provide reference for the assessment of battlefield damage situation.In order to solve the difficulty of heteroge... The damage effect assessment of anti-ship missiles combines system science and weapon science,which can provide reference for the assessment of battlefield damage situation.In order to solve the difficulty of heterogeneous data aggregation and the difficulty in constructing the mapping between factors and damage effect,this paper analyzes the specific damage process of the anti-ship missile to the ship,and proposes a synthetic Evidential Reasoning(ER)–Adaptive Neural Fuzzy Inference System(ANFIS)to assess the damage effect.To solve the problem of fuzziness and uncertainty of criteria in the assessment process,the belief structure model is used to transform qualitative and quantitative information into a unified mathematical structure,and ER algorithm is used to fuse the information of lower-level criteria.In order to solve the problem of fuzziness and uncertainty of the information contained in the first-level variables,and the strong non-linear characteristics of the mapping between first-level variables and damage effect,the ANFIS with selfadaptation and self-learning is constructed.The map between the three first-level variables and damage effect is established,and the interaction process of the various factors in the damage effect assessment are clear.Sensitivity analysis shows that assessment model has good stability.The result analysis and comparative analysis show that the process proposed in this paper can effectively assess the damage effect of anti-ship missiles,and all criteria data are objective and comparable. 展开更多
关键词 ANFIS Belief structure model damage effect assessment ER approach Ship target
原文传递
Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave 被引量:5
9
作者 刘阳 柴常春 +2 位作者 杨银堂 孙静 李志鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期461-466,共6页
In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigati... In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model. 展开更多
关键词 low noise amplifier HEMT high power microwave damage effect
原文传递
Blasting cumulative damage effects of underground engineering rock mass based on sonic wave measurement 被引量:6
10
作者 闫长斌 《Journal of Central South University of Technology》 EI 2007年第2期230-235,共6页
The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparat... The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers. 展开更多
关键词 sonic wave measurement cumulative damage effects damage degree blasting load surrounding rock of underground engineering RSM-SY5 intelligent sonic wave apparatus
在线阅读 下载PDF
Damage effects and mechanism of the silicon NPN monolithic composite transistor induced by high-power microwaves 被引量:4
11
作者 Hui Li Chang-Chun Chai +2 位作者 Yu-Qian Liu Han Wu in-Tang Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期633-639,共7页
A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of ... A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of electric field, current density, and temperature of the device, a detailed investigation on the damage process and mechanism induced by high-power microwaves (HPM) is performed. The results indicate that the temperature elevation occurs in the negative half-period and the temperature drop process is in the positive half-period under the HPM injection from the output port. The damage point is located near the edge of the base-emitter junction of T2, while with the input injection it exists between the base and the emitter of T2. Comparing these two kinds of injection, the input injection is more likely to damage the device than the output injection. The dependences of the damage energy threshold and the damage power threshold causing the device failure on the pulse-width are obtained, and the formulas obtained have the same form as the experimental equations, which demonstrates that more power is required to destroy the device if the pulse-width is shorter. Furthermore, the simulation result in this paper has a good coincidence with the experimental result. 展开更多
关键词 monolithic composite transistor high-power microwaves damage effects pulse-width effects
原文传递
Analysis of displacement damage effects on the charge-coupled device induced by neutrons at Back-n in the China Spallation Neutron Source 被引量:2
12
作者 薛院院 王祖军 +9 位作者 陈伟 郭晓强 姚志斌 何宝平 聂栩 赖善坤 黄港 盛江坤 马武英 缑石龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期435-442,共8页
Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradi... Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradiation experiment.The hot pixels,random telegraph signal(RTS),mean dark signal,dark current and dark signal non-uniformity(DSNU)induced by Back-n are presented.The dark current is calculated according to the mean dark signal at various integration times.The single-particle displacement damage and transient response are also observed based on the online measurement data.The trends of hot pixels,mean dark signal,DSNU and RTS degradation are related to the integration time and irradiation fluence.The mean dark signal,dark current and DSNU2 are nearly linear with neutron irradiation fluence when nearly all the pixels do not reach saturation.In addition,the mechanisms of the displacement damage effects on the CCD are demonstrated by combining the experimental results and technology computer-aided design(TCAD)simulation.Radiation-induced traps in the space charge region of the CCD will act as generation/recombination centers of electron-hole pairs,leading to an increase in the dark signal. 展开更多
关键词 displacement damage effects charge-coupled device(CCD) China Spallation Neutron Source(CSNS) MECHANISMS technology computer-aided design(TCAD)
原文传递
Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse 被引量:2
13
作者 席晓文 柴常春 +3 位作者 赵刚 杨银堂 于新海 刘阳 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期456-460,共5页
The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the d... The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. 展开更多
关键词 PHEMT the electromagnetic pulse damage effect
原文传递
Damage effect analysis and experiment for electronic equipment in impact vibration environment 被引量:2
14
作者 Shi Quan Tian Juan Man Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1384-1388,共5页
This paper analyzes the electronic equipment's effect factors such as structure characteristics and environment.The radar equipment is taken as an experimental subject.The damage laws of electro-products in vibration... This paper analyzes the electronic equipment's effect factors such as structure characteristics and environment.The radar equipment is taken as an experimental subject.The damage laws of electro-products in vibration environment are analyzed.The experiment shows that the damage of electro-products in vibration environment has relations with both the type and amplitude of vibration and their structure. 展开更多
关键词 electro-product vibration environment damage effect.
在线阅读 下载PDF
Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology 被引量:4
15
作者 ZHANG Yan-bo YAO Xu-long +5 位作者 LIANG Peng WANG Ke-xue SUN Lin TIAN Bao-zhu LIU Xiang-xin WANG Shan-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2752-2769,共18页
By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emis... By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture. 展开更多
关键词 rock mechanics acoustic emission(AE) wave velocity imaging technology tempo-spatial evolution characteristics localization effect of damage
在线阅读 下载PDF
Dose-dependent Cardiac Dysfunction and Structural Damage in Rats after Shortwave Radiation 被引量:1
16
作者 ZHANG Jing YU Chao +7 位作者 YAO Bin Wei WANG Hui ZHAO Li XU Xin Ping DONG Ji WANG Hao Yu HAO Yan Hui PENG Rui Yun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2020年第8期603-613,共11页
Objective To detect the effects of shortwave radiation on dose-dependent cardiac structure and function in rats after radiation and to elucidate the mechanism of shortwave radiation induced cardiac injury to identify ... Objective To detect the effects of shortwave radiation on dose-dependent cardiac structure and function in rats after radiation and to elucidate the mechanism of shortwave radiation induced cardiac injury to identify sensitive indicators and prophylactic treatment.Methods One hundred Wistar rats were either exposed to 27 MHz continuous shortwave at a power density of 5,10,and 30 mW/cm^2 for 6 min or undergone sham exposure for the control(the rats had to be placed in the exposure system with the same schedules as the exposed animals,but with an inactive antenna).The Ca^2+,glutamic oxaloacetic transaminase(AST),creatine kinase(CK)and lactate dehydrogenase(LDH)content in the peripheral serum of the rats were detected by an automatic blood biochemical analyser.The electrocardiogram(ECG)of standard lead II was recorded by a multi-channel physiological recording and analysis system.The cardiac structure of rats was observed by light and electron microscopy.Results The results showed that the 5,10,and 30 mW/cm^2 shortwave radiation caused a significant increased in the levels of Ca2+,AST,CK,and LDH in the peripheral serum of rats.The cardiac structure was damaged by radiation and showed a disordered arrangement of myocardial fibres,the cavitation and swelling of myocardial mitochondria.These injuries were most significant 7 d after radiation and were not restored until 28 d after radiation.Conclusion Shortwave radiation of 5,10,and 30 mW/cm^2 can damage rat cardiac function,including damage to the tissue structure and ultrastructure,especially at the level of the myocardial fibres and mitochondria.Shortwave radiation at 5,10,and 30 mW/cm^2 induced damage to rat heart function and structure with a dose-effect relationship,i.e.,the greater the radiation dose was,the more significant the damage was. 展开更多
关键词 Shortwave Rat heart FUNCTION STRUCTURE damage effect Dose dependence
暂未订购
A method to determine the shell layout scheme for equipment battlefield damage tests under artillery fire 被引量:1
17
作者 Cai Chen Quan Shi +2 位作者 Zhi-feng You Hong-yu Ge Fang Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期682-691,共10页
In this paper,a new method for determining the shell layout scheme is proposed,which can make the equipment damage data by the battlefield damage test resemble as close as possible the actual combat data.This method i... In this paper,a new method for determining the shell layout scheme is proposed,which can make the equipment damage data by the battlefield damage test resemble as close as possible the actual combat data.This method is based on the analysis of the impact point distribution and effective damage area of equipment.In order to obtain the position of the impact points,an impact point distribution model under artillery fire was established.Similarly,in order to obtain the effective damage area of equipment,the concepts of generalized damage area and task-based equipment functional damage probability were demonstrated,and the corresponding calculation model was established.Through case analysis,the shell layout scheme was effectively obtained,verifying the correctness of the proposed method. 展开更多
关键词 Battlefield damage test Projectile impact point Effective damage area Functional damage
在线阅读 下载PDF
Mechanical and magnetic hysteresis as indicators of the origin and inception of fatigue damage in steel 被引量:2
18
作者 Sheng BAO Wei-liang JIN Ming-feng HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第8期580-586,共7页
N2 and N3 are known as the transition points of the three principal stages of fatigue: initial accommodation, accretion of damage and terminal fatigue. Many experiments show that the ratios of N2/Nf and N3/Nf tend to ... N2 and N3 are known as the transition points of the three principal stages of fatigue: initial accommodation, accretion of damage and terminal fatigue. Many experiments show that the ratios of N2/Nf and N3/Nf tend to be stable even though the specific N2 and N3 values may fluctuate widely. The primary goal of this research is to study the piezomagnetic field surrounding AISI 1018 steel specimen under repeated loads and to find the ratio values of N2/Nf and N3/Nf by analyzing 11 sets of low-cycle fatigue data. An MTS-810 testing system with a peak capacity of 222 kN was used to obtain the data which consisted of stress, strain, and piezomagnetic field. A computer program was constructed to track the evolution of the piezomagnetic field and re- gression analysis was carried out to determine N2 and N3 values. It was observed that there exists a consistent relationship between N2 and Nf. The apparent invariance of the ratio N2/Nf implies that N2 may be identified as an index of performance in the early loading response of a specimen that forecasts its fatigue life, Nf. It has been demonstrated that measurements of the magnetic and mechanical hysteresis can yield significant insights into the various stages of the development of a fatigue critical microstructure which culminates in complete rupture of the material. 展开更多
关键词 Piezomagnetic effects. Fatigue damage. Mechanical hvsteresis. Magnetic hysteresis
原文传递
THE NEAR TIP FIELDS AND TEMPERATURE DISTRIBUTION AROUND A CRACK IN A BODY OF HARDENING MATERIAL CONTAINING SMALL DAMAGE
19
作者 Yu Shouwen Tsinghua University, Beijing 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1989年第4期343-352,共10页
In this paper, the following conclusions are reached: The influence of damage on the stress and strain feilds can be neglected in an asymptotic sense for the solutions of damage field in a plastic solid containing sma... In this paper, the following conclusions are reached: The influence of damage on the stress and strain feilds can be neglected in an asymptotic sense for the solutions of damage field in a plastic solid containing small damage. The formulation of the problem is simplified with an uncoupled approach. Based on experimental results of plastic damage, most of the damage in the material are con- sidered as small damage with the critacal damage variable ω_c<<1. Using this approach, closed form ex- pressions of the near tip damage fields for mode Ⅲ, mode I and the temperature distribution induced by plastic dissipation in a hardening material containing damage are deduced. We point out that the temperature distribution in the process zone is strongly dependent on the damage of materials even for the small damage case. The results of the predicted value of the temperature rise near the tip region ignoring the damage effect is appreciably higher than the observed data. The main reason of this discrepancy is the presence of damage dissipation and the fact that its influence on the calculation of plas- tic dissipation have not been appropriately taken account of. The calculation is improved by taking in- to account the damage effect on the temperature rise, then the T_(max) value is in better accord with the experimental value. 展开更多
关键词 small damage uncoupled procedure near tip field temperature distribution damage effect.
在线阅读 下载PDF
Nonlinear active control of damaged piezoelectric smart laminated plates and damage detection
20
作者 傅衣铭 阮建力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第4期421-436,共16页
Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Ha... Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Hamilton's principle, the higher- order shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations, and the strain energy equivalence theory. A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation. Influence of the piezoelectric layers' location on the vibration control is in- vestigated. In addition, effects of the degree and location of damage on the sensor output voltage are discussed. A method for damage detection is introduced. 展开更多
关键词 piezoelectric smart laminated plates nonlinear vibration damage effect piezoelectric effect active control damaue detection
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部