The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group...The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.展开更多
Let X be a smooth projective curve of genus g 2 over an algebraically closed field k of characteristic p>0,and F:X→X(1)the relative Frobenius morphism.Let M s X(r,d)(resp.M ss X(r,d))be the moduli space of(resp.se...Let X be a smooth projective curve of genus g 2 over an algebraically closed field k of characteristic p>0,and F:X→X(1)the relative Frobenius morphism.Let M s X(r,d)(resp.M ss X(r,d))be the moduli space of(resp.semi-)stable vector bundles of rank r and degree d on X.We show that the set-theoretic map S ss Frob:M ss X(r,d)→M ss X(1)(rp,d+r(p-1)(g-1))induced by[E]→[F(E)]is a proper morphism.Moreover,the induced morphism S s Frob:M s X(r,d)→M s X(1)(rp,d+r(p-1)(g-1))is a closed immersion.As an application,we obtain that the locus of moduli space M s X(1)(p,d)consisting of stable vector bundles whose Frobenius pull backs have maximal Harder-Narasimhan polygons is isomorphic to the Jacobian variety Jac X of X.展开更多
文摘The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.
基金supported by National Natural Science Foundation of China (Grant No. 11271275)
文摘Let X be a smooth projective curve of genus g 2 over an algebraically closed field k of characteristic p>0,and F:X→X(1)the relative Frobenius morphism.Let M s X(r,d)(resp.M ss X(r,d))be the moduli space of(resp.semi-)stable vector bundles of rank r and degree d on X.We show that the set-theoretic map S ss Frob:M ss X(r,d)→M ss X(1)(rp,d+r(p-1)(g-1))induced by[E]→[F(E)]is a proper morphism.Moreover,the induced morphism S s Frob:M s X(r,d)→M s X(1)(rp,d+r(p-1)(g-1))is a closed immersion.As an application,we obtain that the locus of moduli space M s X(1)(p,d)consisting of stable vector bundles whose Frobenius pull backs have maximal Harder-Narasimhan polygons is isomorphic to the Jacobian variety Jac X of X.