In this work,several HZSM-5 catalysts with different Si/Al ratios treated with acids are selected as catalysts and used for hydration of cyclohexene to cyclohexanol.The results indicated that HZSM-5(Si/Al=38)modified ...In this work,several HZSM-5 catalysts with different Si/Al ratios treated with acids are selected as catalysts and used for hydration of cyclohexene to cyclohexanol.The results indicated that HZSM-5(Si/Al=38)modified with 4 mol·L^(-1) nitric acid was selected as an efficient catalyst for improving the hydration efficiency of cyclohexene.Furthermore,the microstructures and properties of fresh,used and regenerated acid-modified catalysts have been characterized by X-ray diffraction,scanning electron microscopy,nitrogen adsorption/desorption isotherm,Fourier transform infrared,thermal gravimetric analyzer,ammonia temperature programmed desorption and pyridine adsorbs Fourier transform infrared.The characterization results indicated that the total surface areas and pore volume of HZSM-5 zeolite increased after nitric acid treatment due to the formation of mesoporous structure.This benefits the diffusion rate of reactants and products,which improves the hydration efficiency and stability of the catalyst.Under the catalysis of HZSM-5,the conversion of cyclohexene was found to be 9.0%.However,treatment of HZSM-5 with nitric acid enhanced the conversion of cyclohexene to 12.2%,achieving a selectivity of 99.7%for cyclohexanol under optimal reaction conditions.This work affords a mild and efficient approach for improving the hydration efficiency and has potential industrial application value.展开更多
SAPO-5 zeolite supported RuMn was a highly efficient catalyst for the aqueous-phase selective hydrodeoxygenation of guaiacol to cyclohexanol.The optimal catalyst achieved a high cyclohexanol yield of 93.7%at full guai...SAPO-5 zeolite supported RuMn was a highly efficient catalyst for the aqueous-phase selective hydrodeoxygenation of guaiacol to cyclohexanol.The optimal catalyst achieved a high cyclohexanol yield of 93.7%at full guaiacol conversion under mild conditions,with a high TOF of 920 h^(-1).Moreover,the catalyst displayed remarkable performance for the hydrogenation of phenol to cyclohexanol,where a 100%yield of cyclohexanol was obtained at a phenol-to-Ru molar ratio of about 17900.In particular,the catalyst exhibited excellent recyclability and could be recycled for 20 times without obvious activity loss.The as-prepared RuMn/SAPO-5 catalyst exhibited higher performance than most of the reported Rubased catalysts.展开更多
The synergy of metal/oxygen vacancy(O_(v))pairs is critical in catalyzing activation of C-H,C=C,and C-O bonds.However,gaining fundamental understanding on spatial distance of metallic and O_(v)sites on catalyst surfac...The synergy of metal/oxygen vacancy(O_(v))pairs is critical in catalyzing activation of C-H,C=C,and C-O bonds.However,gaining fundamental understanding on spatial distance of metallic and O_(v)sites on catalyst surface would lead to unexpected chemoselectivity toward important and challenging reactions.In this work,we have proposed and validated unique Ni-O-Ce-O_(v)enriched Ni/CeO_(2)catalysts prepared by a deposition-precipitation method,for the transfer hydrogenation of lignin-derived guaiacol toward cyclohexanol rather than benzene derivatives.The counter-intuitively designed high Ni loading Ni_(2)0/CeO_(2)catalyst(20 wt%Ni content)displays a distance of 0.5 nm for Ni/O_(v)pairs with a remarkable activity(TOF:166.5 h^(-1))and 90%+selectivity for C_(Ar)=C_(Ar)bond saturation,outperforming better metal-dispersed Ni_(5)/CeO_(2)catalyst with limited presence of Ni-O-Ce-O_(v)sites.The high hydrogenation activity against hydrogenolysis reactions on Ni_(2)0/CeO_(2)catalyst is attributed to tunable Ni/O_(v)distances,which constrain the cleavage of CAr-OH bond and deep deoxygenation.Such spatial distribution effect has also facilitated tandem dehydrogenation(O-H bond cleavage)and hydrogenation(C_(Ar)=C_(Ar)hydrogenation)reactions,leading to cyclohexanol as the target product in the absence of externally added H_(2).Insights into spatial distribution of O_(v)sites open an alternative perspective in designing efficient catalysts toward producing value-added cyclic oxygenates through upgrading of lignin compounds.展开更多
Catalytic dehydrogenative aromatization(CDA)has emerged as a powerful strategy for the synthesis of substituted phenols.However,most of the known CDA methods suffer from limited functional group compatibility due to t...Catalytic dehydrogenative aromatization(CDA)has emerged as a powerful strategy for the synthesis of substituted phenols.However,most of the known CDA methods suffer from limited functional group compatibility due to the use of strong oxidants,reductants,or bases.Herein,we report a(cis-P_(2)Cl)Ir-catalyzed CDA reaction enabled by transfer dehydrogenation(TD).This catalytic system is effective for CDA of both cyclohexanone and cyclohexanol derivatives and demonstrates excellent tolerance toward a variety of functional groups,including readily oxidizable electron-rich heterocycles.DFT studies further reveal that the(cis-P_(2)Cl)Ir catalyst is thermodynamically disfavored for the formation of a potential out-of-cycle catalyst species,iridium phenoxyl hydride complex,via oxidative addition of the phenol O–H bond,thereby preventing catalyst inhibition observed in the previously reported TD system.展开更多
Cyclohexanol is an important intermediate in the synthesis of Nylon-6 and plasticizers. In this work,cobalt oxide nanoparticles(NPs) supported on porous carbon(Co Ox@CN) were fabricated by one-pot method and the h...Cyclohexanol is an important intermediate in the synthesis of Nylon-6 and plasticizers. In this work,cobalt oxide nanoparticles(NPs) supported on porous carbon(Co Ox@CN) were fabricated by one-pot method and the hybrids could efficiently and selectively hydrogenate phenol to cyclohexanol with a high yield of 98%. The high catalytic performance of Co Ox@CN was associate with the high surface area(340 m2/g) and uniformly dispersed NPs. Furthurmore, by detailed analysing the relationship between catalytic activity and catalysts composition, it clearly indicated that the Co3O4 in Co Ox@CN played an important role for the adsorption and activation of phenol and the in situ gernerated Co was responsible for hydrogen adsorption and dissociation. These findings provide a fundamental insight into the real active sites in hydrogenation of phenol using Co-based catalysts.展开更多
In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of ...In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity.展开更多
The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic re...The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermodynamic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may off er guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.展开更多
Many by-products are generated in the process of oxidizing cyclohexene to produce 1,2-epoxycyclohexane by hydrogen peroxide,including cyclohexanol,cyclohexanone,etc.To obtain high-purity 1,2-epoxycyclohexane, the by-p...Many by-products are generated in the process of oxidizing cyclohexene to produce 1,2-epoxycyclohexane by hydrogen peroxide,including cyclohexanol,cyclohexanone,etc.To obtain high-purity 1,2-epoxycyclohexane, the by-products and unreacted cyclohexene must be removed through rectification,in which the vapor-liquid equilibrium(VLE)data of the system are needed.In this study,the VLE data of cyclohexene-cyclohexanol system were studied at 101.3 kPa using an improved EC-2 VLE still.The thermodynamic consistency of the data was examined by Herington's method.The results obtained were exemplary.The VLE data were correlated by the Wilson equation. The difference between the calculated values and the experimental data is minor,indicating that the VLE data are suitable for engineering design.展开更多
Solubilities were measured for succinic acid dissolved in cyclohexanone, cyclohexanol and 5 of their mixed solvents at the temperature range from 291. 85 K to 358.37 K using a dynamic method. The solubility data were ...Solubilities were measured for succinic acid dissolved in cyclohexanone, cyclohexanol and 5 of their mixed solvents at the temperature range from 291. 85 K to 358.37 K using a dynamic method. The solubility data were regressed by λh equation, with,the average absolute relative deviation 3.47%. The binary interaction parameter is 0.306 7 for the mixed solvent of oyolohexanone and cyclohexanol was determined by correlating the experimental solubilities with the modified λh equation. When the binary interaction parameter was determined it can be used to extrapolate the solubilities of succinic acid in mixed solvents of cyclohexanone and cyclohexanol at any proportion.The average absolute relative deviation was 7. 69% by using the modified λh equation to correlate the solubility data, however, the average absolute relative deviation was 8.89% by using NRTL equation to correlate the solubility data. The results show that the accuracy of the modified λh equation is better than that of the NRTL equation for the solubility of succinic acid in the 5 mixed solvents of cyclohexanone and cyclohexanol.展开更多
Na2WO4‐acidic ionic liquid was used as a simple, ecofriendly, recyclable and efficient catalytic system for the one‐pot conversion of cyclohexanol to ε‐caprolactam. The effect of the structure of the ionic liquid ...Na2WO4‐acidic ionic liquid was used as a simple, ecofriendly, recyclable and efficient catalytic system for the one‐pot conversion of cyclohexanol to ε‐caprolactam. The effect of the structure of the ionic liquid on the catalytic activity of this system was investigated, and the results revealed that sulfonic acid‐functionalized ionic liquids with HSO4? as an anion gave the best results. The highly efficient performance of this catalyst system was attributed to the phase‐transfer behavior of the cation of the ionic liquid, the improved coordination of the substrate to bisperoxotungstate duringthe oxidation reaction, and the stabilization of the intermediate formed during the Beckmann rearrangement.展开更多
Iron oxide nanoparticles supported on zirconia were prepared by precipitation-deposition method and characterized by XRD, SEM, FT-IR, TGA/DTA, surface area and particle size analysis. Catalytic activities of the catal...Iron oxide nanoparticles supported on zirconia were prepared by precipitation-deposition method and characterized by XRD, SEM, FT-IR, TGA/DTA, surface area and particle size analysis. Catalytic activities of the catalysts were tested in the gas-phase conversion of cyclohexanol in a fixed-bed flow type, Pyrex glass reactor, at 433 - 463 K. Major detected products were cyclohexanone, cyclohexene and benzene, depending on the used catalyst. The rate of reaction was significantly raised by the introduction of molecular oxygen in the feed gas, thereby suggesting the oxidation of cyclohexanol to cyclohexanone. Furthermore, the catalytic activity of iron oxide nanoparticles supported on zirconia treated with hydrogen at 553 K for 2 hours, was more selective and better than the unreduced iron oxide nanoparticles supported on zirconia, in the gas-phase oxidation of cyclohexanol to cyclohexanone. Experimental results showed that there was no leaching of metal, and that the catalyst was thus truly heterogeneous.展开更多
ZnFe2O4-BiOC1 composites were prepared by both hydrothermal and direct precipitation processes and the structures and properties of the samples were characterized by various instrumental techniques. The samples were t...ZnFe2O4-BiOC1 composites were prepared by both hydrothermal and direct precipitation processes and the structures and properties of the samples were characterized by various instrumental techniques. The samples were then used as catalysts for the photocatalytic reduction of CQ in cyclohexanol under ultraviolet irradiation to give cyclohexanone (CH) and cyclohexyl formate (CF). The photocatalytic CO2 reduction activities over the hydrothermally prepared ZnFeaO4-BiOCl composites were higher than those over the directly-precipitated composites. This is because compared to the direct-precipitation sample, the ZnFe2O4 nanoparticles in the hydrothermal sample were smaller and more uniformly distributed on the surface of BiOCl and so more heterojunctions were formed. Higher CF and CH yields were obtained for the pure BiOCl and BiOCl composite samples with more exposed (001) facets than for the samples with more exposed (010) facets. This is due to the higher density of oxygen atoms in the exposed (001) facets, which creates more oxygen vacancies, and thereby improves the separation efficiency of the electron-hole pairs. More importantly, irradiation of the (001) facets with ultraviolet light produces photo-generated electrons which is helpful for the reduction of CO2 to -CO2^-. The mechanism for the photocatalytic reduction of CO2 in cyclohexanol over ZnFe204-BiOCl composites with exposed (001) facets involves electron transfer and carbon radical formation.展开更多
The oxidation of cyclohexanol to cyclohexanone with 30% aqueous hydrogen peroxide by using peroxotung-state complexes formed in situ from sodium tungstate di-hydrate and various bidentate organic ligands as the cataly...The oxidation of cyclohexanol to cyclohexanone with 30% aqueous hydrogen peroxide by using peroxotung-state complexes formed in situ from sodium tungstate di-hydrate and various bidentate organic ligands as the catalysts, without organic solvents, halide and phase transfer catalyst has been carried out. The influence of 13 ligands on the oxidation is investigated. The maximum yield of cyclohexanone is obtained when using 1,10-phenanthroline (96%) and oxalic acid (95%) as the ligand. Very high yields (around 90%) have also been obtained for the instances of using salicylic acid, 3,5-dibromosalicylic acid, and 8-hydro- xylquino-line as ligands. A research to improve the reaction condition using cheap oxalic acid as the ligand indicates that the optimum condition is that the reaction mixture with a molar ratio of cycohexanol:tungstate dihydrate:oxalic acid: 30% H2O2=100:2:2:120 was stirred at 85-90℃ for 12 h.展开更多
Lignin,an abundant aromatic polymer in nature,has received significant attention for its potential in the production of bio-oils and chemicals owing to increased resource availability and environmental issues.The hydr...Lignin,an abundant aromatic polymer in nature,has received significant attention for its potential in the production of bio-oils and chemicals owing to increased resource availability and environmental issues.The hydrodeoxygenation of guaiacol,a lignin-derived monomer,can produce cyclohexanol,a nylon precursor,in a carbon-negative and environmentally friendly manner.This study explored the porous properties and the effects of activation methods on the Ru-based catalyst supported by environmentally friendly and cost-effective hydrochar.Highly selective cleavage of C_(ary)-O bonds was achieved under mild conditions(160°C,0.2 MPa H_(2),and 4 h),and alkali activation further improved the catalytic activity.Various characterization methods revealedthat hydrothermal treatment and alkali activation relatively contributed to the excellent performance of the catalysts and influenced their porous structure and Ru dispersion.X-ray photoelectron spectroscopy results revealed an increased formation of metallic ruthenium,indicating the effective regulation of interaction between active sites and supports.This synergistic approach used in this study,involving the valorization of cellulose-derived hydrochar and the selective production of nylon precursors from lignin-derived guaiacol,indicated the comprehensive and sustainable utilization of biomass resources.展开更多
基金financial support by the National Natural Science Foundation of China(22378339)Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.
文摘In this work,several HZSM-5 catalysts with different Si/Al ratios treated with acids are selected as catalysts and used for hydration of cyclohexene to cyclohexanol.The results indicated that HZSM-5(Si/Al=38)modified with 4 mol·L^(-1) nitric acid was selected as an efficient catalyst for improving the hydration efficiency of cyclohexene.Furthermore,the microstructures and properties of fresh,used and regenerated acid-modified catalysts have been characterized by X-ray diffraction,scanning electron microscopy,nitrogen adsorption/desorption isotherm,Fourier transform infrared,thermal gravimetric analyzer,ammonia temperature programmed desorption and pyridine adsorbs Fourier transform infrared.The characterization results indicated that the total surface areas and pore volume of HZSM-5 zeolite increased after nitric acid treatment due to the formation of mesoporous structure.This benefits the diffusion rate of reactants and products,which improves the hydration efficiency and stability of the catalyst.Under the catalysis of HZSM-5,the conversion of cyclohexene was found to be 9.0%.However,treatment of HZSM-5 with nitric acid enhanced the conversion of cyclohexene to 12.2%,achieving a selectivity of 99.7%for cyclohexanol under optimal reaction conditions.This work affords a mild and efficient approach for improving the hydration efficiency and has potential industrial application value.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY23B060006 and LY18B060016).
文摘SAPO-5 zeolite supported RuMn was a highly efficient catalyst for the aqueous-phase selective hydrodeoxygenation of guaiacol to cyclohexanol.The optimal catalyst achieved a high cyclohexanol yield of 93.7%at full guaiacol conversion under mild conditions,with a high TOF of 920 h^(-1).Moreover,the catalyst displayed remarkable performance for the hydrogenation of phenol to cyclohexanol,where a 100%yield of cyclohexanol was obtained at a phenol-to-Ru molar ratio of about 17900.In particular,the catalyst exhibited excellent recyclability and could be recycled for 20 times without obvious activity loss.The as-prepared RuMn/SAPO-5 catalyst exhibited higher performance than most of the reported Rubased catalysts.
基金supported by the National Natural Science Foundation of China(22078365,22478437)the Natural Science Foundation of Shandong Province(ZR2023MB076)。
文摘The synergy of metal/oxygen vacancy(O_(v))pairs is critical in catalyzing activation of C-H,C=C,and C-O bonds.However,gaining fundamental understanding on spatial distance of metallic and O_(v)sites on catalyst surface would lead to unexpected chemoselectivity toward important and challenging reactions.In this work,we have proposed and validated unique Ni-O-Ce-O_(v)enriched Ni/CeO_(2)catalysts prepared by a deposition-precipitation method,for the transfer hydrogenation of lignin-derived guaiacol toward cyclohexanol rather than benzene derivatives.The counter-intuitively designed high Ni loading Ni_(2)0/CeO_(2)catalyst(20 wt%Ni content)displays a distance of 0.5 nm for Ni/O_(v)pairs with a remarkable activity(TOF:166.5 h^(-1))and 90%+selectivity for C_(Ar)=C_(Ar)bond saturation,outperforming better metal-dispersed Ni_(5)/CeO_(2)catalyst with limited presence of Ni-O-Ce-O_(v)sites.The high hydrogenation activity against hydrogenolysis reactions on Ni_(2)0/CeO_(2)catalyst is attributed to tunable Ni/O_(v)distances,which constrain the cleavage of CAr-OH bond and deep deoxygenation.Such spatial distribution effect has also facilitated tandem dehydrogenation(O-H bond cleavage)and hydrogenation(C_(Ar)=C_(Ar)hydrogenation)reactions,leading to cyclohexanol as the target product in the absence of externally added H_(2).Insights into spatial distribution of O_(v)sites open an alternative perspective in designing efficient catalysts toward producing value-added cyclic oxygenates through upgrading of lignin compounds.
基金support from the National Key R&D Program of China(2021YFA1501700)National Natural Science Foundation of China(22425012,22293013)+3 种基金the Shanghai Sailing Program(24YF2756700)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0610000,XDB1180000)CAS Project for Young Scientists in Basic Research(YSBR-O94)Science and Technology Commission of Shanghai Municipality(23JC1404400).
文摘Catalytic dehydrogenative aromatization(CDA)has emerged as a powerful strategy for the synthesis of substituted phenols.However,most of the known CDA methods suffer from limited functional group compatibility due to the use of strong oxidants,reductants,or bases.Herein,we report a(cis-P_(2)Cl)Ir-catalyzed CDA reaction enabled by transfer dehydrogenation(TD).This catalytic system is effective for CDA of both cyclohexanone and cyclohexanol derivatives and demonstrates excellent tolerance toward a variety of functional groups,including readily oxidizable electron-rich heterocycles.DFT studies further reveal that the(cis-P_(2)Cl)Ir catalyst is thermodynamically disfavored for the formation of a potential out-of-cycle catalyst species,iridium phenoxyl hydride complex,via oxidative addition of the phenol O–H bond,thereby preventing catalyst inhibition observed in the previously reported TD system.
基金Financial support from the key program supported by the Natural Science Foundation of Zhejiang Province, China (No. LZ18B060002)the National Natural Science Foundation of China (No. 21622308)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (No. J20130060)the Fundamental Research Funds for the Central Universitiesthe Program for Zhejiang Leading Team of S&T Innovation are greatly appreciated
文摘Cyclohexanol is an important intermediate in the synthesis of Nylon-6 and plasticizers. In this work,cobalt oxide nanoparticles(NPs) supported on porous carbon(Co Ox@CN) were fabricated by one-pot method and the hybrids could efficiently and selectively hydrogenate phenol to cyclohexanol with a high yield of 98%. The high catalytic performance of Co Ox@CN was associate with the high surface area(340 m2/g) and uniformly dispersed NPs. Furthurmore, by detailed analysing the relationship between catalytic activity and catalysts composition, it clearly indicated that the Co3O4 in Co Ox@CN played an important role for the adsorption and activation of phenol and the in situ gernerated Co was responsible for hydrogen adsorption and dissociation. These findings provide a fundamental insight into the real active sites in hydrogenation of phenol using Co-based catalysts.
基金the Guizhou Provincial S&T Project(ZK[2022]011)the National Natural Science Foundation of China(21908033,21922513)+1 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2020GXNSFAA297072)the Fok Ying-Tong Education Foundation(161030)。
文摘In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity.
基金the support from Clariant International Ltd.the National Natural Science Foundation of China (Nos.22022811,21938008,and U21B2096)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermodynamic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may off er guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.
基金Supported by the Outstanding Personality Innovation Funds of Henan Province(0121001900)
文摘Many by-products are generated in the process of oxidizing cyclohexene to produce 1,2-epoxycyclohexane by hydrogen peroxide,including cyclohexanol,cyclohexanone,etc.To obtain high-purity 1,2-epoxycyclohexane, the by-products and unreacted cyclohexene must be removed through rectification,in which the vapor-liquid equilibrium(VLE)data of the system are needed.In this study,the VLE data of cyclohexene-cyclohexanol system were studied at 101.3 kPa using an improved EC-2 VLE still.The thermodynamic consistency of the data was examined by Herington's method.The results obtained were exemplary.The VLE data were correlated by the Wilson equation. The difference between the calculated values and the experimental data is minor,indicating that the VLE data are suitable for engineering design.
文摘Solubilities were measured for succinic acid dissolved in cyclohexanone, cyclohexanol and 5 of their mixed solvents at the temperature range from 291. 85 K to 358.37 K using a dynamic method. The solubility data were regressed by λh equation, with,the average absolute relative deviation 3.47%. The binary interaction parameter is 0.306 7 for the mixed solvent of oyolohexanone and cyclohexanol was determined by correlating the experimental solubilities with the modified λh equation. When the binary interaction parameter was determined it can be used to extrapolate the solubilities of succinic acid in mixed solvents of cyclohexanone and cyclohexanol at any proportion.The average absolute relative deviation was 7. 69% by using the modified λh equation to correlate the solubility data, however, the average absolute relative deviation was 8.89% by using NRTL equation to correlate the solubility data. The results show that the accuracy of the modified λh equation is better than that of the NRTL equation for the solubility of succinic acid in the 5 mixed solvents of cyclohexanone and cyclohexanol.
基金supported by the National Natural Science Foundation of China (20636030, 2090618, 21236001)the Natural Science Foundation of Hebei Province (B2017202226)~~
文摘Na2WO4‐acidic ionic liquid was used as a simple, ecofriendly, recyclable and efficient catalytic system for the one‐pot conversion of cyclohexanol to ε‐caprolactam. The effect of the structure of the ionic liquid on the catalytic activity of this system was investigated, and the results revealed that sulfonic acid‐functionalized ionic liquids with HSO4? as an anion gave the best results. The highly efficient performance of this catalyst system was attributed to the phase‐transfer behavior of the cation of the ionic liquid, the improved coordination of the substrate to bisperoxotungstate duringthe oxidation reaction, and the stabilization of the intermediate formed during the Beckmann rearrangement.
文摘Iron oxide nanoparticles supported on zirconia were prepared by precipitation-deposition method and characterized by XRD, SEM, FT-IR, TGA/DTA, surface area and particle size analysis. Catalytic activities of the catalysts were tested in the gas-phase conversion of cyclohexanol in a fixed-bed flow type, Pyrex glass reactor, at 433 - 463 K. Major detected products were cyclohexanone, cyclohexene and benzene, depending on the used catalyst. The rate of reaction was significantly raised by the introduction of molecular oxygen in the feed gas, thereby suggesting the oxidation of cyclohexanol to cyclohexanone. Furthermore, the catalytic activity of iron oxide nanoparticles supported on zirconia treated with hydrogen at 553 K for 2 hours, was more selective and better than the unreduced iron oxide nanoparticles supported on zirconia, in the gas-phase oxidation of cyclohexanol to cyclohexanone. Experimental results showed that there was no leaching of metal, and that the catalyst was thus truly heterogeneous.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 21176192).
文摘ZnFe2O4-BiOC1 composites were prepared by both hydrothermal and direct precipitation processes and the structures and properties of the samples were characterized by various instrumental techniques. The samples were then used as catalysts for the photocatalytic reduction of CQ in cyclohexanol under ultraviolet irradiation to give cyclohexanone (CH) and cyclohexyl formate (CF). The photocatalytic CO2 reduction activities over the hydrothermally prepared ZnFeaO4-BiOCl composites were higher than those over the directly-precipitated composites. This is because compared to the direct-precipitation sample, the ZnFe2O4 nanoparticles in the hydrothermal sample were smaller and more uniformly distributed on the surface of BiOCl and so more heterojunctions were formed. Higher CF and CH yields were obtained for the pure BiOCl and BiOCl composite samples with more exposed (001) facets than for the samples with more exposed (010) facets. This is due to the higher density of oxygen atoms in the exposed (001) facets, which creates more oxygen vacancies, and thereby improves the separation efficiency of the electron-hole pairs. More importantly, irradiation of the (001) facets with ultraviolet light produces photo-generated electrons which is helpful for the reduction of CO2 to -CO2^-. The mechanism for the photocatalytic reduction of CO2 in cyclohexanol over ZnFe204-BiOCl composites with exposed (001) facets involves electron transfer and carbon radical formation.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 20172036)the Project of Skeleton Teachers of the Ministry of Education of China (Grant No. (2000)65).
文摘The oxidation of cyclohexanol to cyclohexanone with 30% aqueous hydrogen peroxide by using peroxotung-state complexes formed in situ from sodium tungstate di-hydrate and various bidentate organic ligands as the catalysts, without organic solvents, halide and phase transfer catalyst has been carried out. The influence of 13 ligands on the oxidation is investigated. The maximum yield of cyclohexanone is obtained when using 1,10-phenanthroline (96%) and oxalic acid (95%) as the ligand. Very high yields (around 90%) have also been obtained for the instances of using salicylic acid, 3,5-dibromosalicylic acid, and 8-hydro- xylquino-line as ligands. A research to improve the reaction condition using cheap oxalic acid as the ligand indicates that the optimum condition is that the reaction mixture with a molar ratio of cycohexanol:tungstate dihydrate:oxalic acid: 30% H2O2=100:2:2:120 was stirred at 85-90℃ for 12 h.
基金The financial support from the National Natural Science Foundation of China(Grant No.52276202)the National Key R&D Program of China(Grant No.2020YFC1910100)+4 种基金the Tsinghua University-Shanxi Clean Energy Research Institute Innovation Project Seed FundHuaneng Group Science and Technology Research Project(Grant No.KTHT-U22YYJC12)the International Joint Mission On Climate Change and Carbon NeutralityTsinghua-Toyota Joint Research Fundand State Key Laboratory of Chemical Engineering(Grant No.SKL-ChE-22A03)are gratefully acknowledged.
文摘Lignin,an abundant aromatic polymer in nature,has received significant attention for its potential in the production of bio-oils and chemicals owing to increased resource availability and environmental issues.The hydrodeoxygenation of guaiacol,a lignin-derived monomer,can produce cyclohexanol,a nylon precursor,in a carbon-negative and environmentally friendly manner.This study explored the porous properties and the effects of activation methods on the Ru-based catalyst supported by environmentally friendly and cost-effective hydrochar.Highly selective cleavage of C_(ary)-O bonds was achieved under mild conditions(160°C,0.2 MPa H_(2),and 4 h),and alkali activation further improved the catalytic activity.Various characterization methods revealedthat hydrothermal treatment and alkali activation relatively contributed to the excellent performance of the catalysts and influenced their porous structure and Ru dispersion.X-ray photoelectron spectroscopy results revealed an increased formation of metallic ruthenium,indicating the effective regulation of interaction between active sites and supports.This synergistic approach used in this study,involving the valorization of cellulose-derived hydrochar and the selective production of nylon precursors from lignin-derived guaiacol,indicated the comprehensive and sustainable utilization of biomass resources.