期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Cyclic behavior of root-loess composites under direct simple shear test conditions and insights from discrete element method modeling
1
作者 SUN Yuan LI Hui CHENG Zhifeng 《水利水电技术(中英文)》 北大核心 2025年第S1期665-680,共16页
Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f... Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°. 展开更多
关键词 root-soil composite cyclic direct simple shear tests PFC^(3D)
在线阅读 下载PDF
Experimental insights into anchorage performance of en-echelon joints under cyclic shear loading
2
作者 Bin Wang Qiangyong Zhang +2 位作者 Yujing Jiang Kang Duan Hongbin Chen 《International Journal of Mining Science and Technology》 2025年第3期399-416,共18页
Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints... Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints with various orientations using laboratory cyclic shear tests.By comparing unbolted and bolted en-echelon joints,we analyze shear zone damage,shear properties,dilatancy,energy absorption,and acoustic emission characteristics to evaluate anchoring effects across shear cycles and joint orientations.Results reveal that bolted en-echelon joints experience more severe shear zone damage after cycles,with bolt deformation correlating to shear zone width.Bolted en-echelon joints exhibit faster shear strength deterioration and higher cumulative strength loss compared to unbolted ones,with losses ranging from 20.04%to 72.76%.The compressibility of en-echelon joints reduces the anchoring effect during shear cycles,leading to lower shear strength of bolted en-echelon joints in later stages of shear cycles compared to unbolted ones.Bolts reinforce en-echelon joints more effectively at non-positive angles,with the best performance observed at 0°and-60°.Anchorage accelerates the transition from rolling friction to sliding friction in the shear zone,enhancing energy absorption,which is crucial for rock projects under dynamic shear loading.Additionally,rock bolts expedite the transition of the cumulative AE hits and cumulative AE energy curves from rapid to steady growth,indicating that strong bolt-rock interactions accelerate crack initiation,propagation,and energy release. 展开更多
关键词 En-echelon joints Shear strength deterioration Cyclic shear test Anchorage performance Energy absorption characteristics Acoustic emission
在线阅读 下载PDF
Shear behavior of rock joints reinforced with fully-grouted and energy-absorbing bolts subjected to shear cycles
3
作者 Hanfang Zheng Xuezhen Wu +2 位作者 Yujing Jiang Gang Wang Zhiyong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4314-4328,共15页
In geotechnical engineering,rock bolts are commonly used for reinforcement,while the surrounding rock mass bears varying degrees of shear loads.The shear rate affects the stability of bolted rock joints,especially in ... In geotechnical engineering,rock bolts are commonly used for reinforcement,while the surrounding rock mass bears varying degrees of shear loads.The shear rate affects the stability of bolted rock joints,especially in projects susceptible to dynamic shear loads.In laboratory experiments,fully-grouted bolts and energy-absorbing bolts were used as research objects,and artificial rock specimens with rough joints were fabricated to analyze the shear characteristics and damage mechanisms of bolted rock joints under cyclic shear conditions and different shear velocities.The results showed that as the shear rate increased,the shear strength of bolted rock joint specimens decreased.Degradation of asperities resulted in no obvious peak shear stress in the specimens.Energy-absorbing bolts exhibited greater deformation capacity,with significant necking phenomena and the ability to withstand larger shear displacements.In contrast,fully-grouted bolts,which have threaded surfaces that provide higher bonding performance,exhibited a reduced capacity for plastic deformation and were prone to breaking under smaller shear displacements.Although the shear stiffness of specimens reinforced by energy-absorbing bolts was slightly lower than that of fully-grouted bolt specimens,they demonstrated greater stability under various shear rates.The absorbed shear energy showed that energy-absorbing bolts had superior coordinated deformation capabilities,thus exhibiting greater absorbed shear energy than fully-grouted bolts.Overall,fully-grouted bolts are more suitable for projects requiring higher rock shear strength and overall stiffness.In contrast,energy-absorbing bolts are more suitable for coping with dynamic or fluctuating load conditions to maintain the relative stability of jointed rock masses. 展开更多
关键词 Energy-absorbing bolt Fully-grouted bolt Shear rate Cyclic shear test Shear absorbed energy
在线阅读 下载PDF
Degradation of fully saturated uniform sand subjected to small-strain undrained cyclic shearing
4
作者 Vedran Jagodnik Tea Sulovsky 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6662-6677,共16页
In soil dynamics,cyclic tests on sands have been extensively studied over the past several decades.Among the natural materials most susceptible to strength loss due to earthquakes,sands are commonly tested under varyi... In soil dynamics,cyclic tests on sands have been extensively studied over the past several decades.Among the natural materials most susceptible to strength loss due to earthquakes,sands are commonly tested under varying loading,frequency,and drainage conditions.Traditionally,it has been assumed that pore pressure increases with constant strength loss once the threshold for pore pressure build-up is reached.However,recent studies have revealed that at small strains,the material initially hardens despite the generation of pore pressure.This paper presents the response and degradation of uniformly graded Drava River sand(DrOS018),similar to well-known sands such as Toyoura,Nevada or Ottawa sands,and the initial hardening phenomena that occur around threshold strains.Tests were conducted using a triaxial cyclic device at three relative densities and cell pressures(100 kPa,200 kPa,and 400 kPa)under undrained conditions.Strain-controlled tests were conducted at 0.1 Hz and 0.05 Hz using sinusoidal loading,with samples prepared by under-compaction.After crossing the threshold,the sand initially shows hardening(degradation index greater than 1)with up to a 35%increase in pore pressure,followed by strength degradation at higher strains.This study is critical for seismic design and safety,particularly for fully saturated sands in coastal and high water table areas.The findings enhance our understanding of liquefaction potential and site response,aiding more informed engineering practices by contributing to enhanced knowledge in soil dynamics and improved predictive models.The results support effective mitigation strategies and infrastructure resilience in earthquake-prone regions such as Croatia. 展开更多
关键词 Cyclic triaxial test Uniform drava river sand Degradation index Normalized pore water pressure
在线阅读 下载PDF
Undrained cyclic simple shear characteristics of transparent sand manufactured by fused quartz
5
作者 ZHAO Jin-qiao OU Qiang +4 位作者 JIANG Chun-yong DING Xuan-ming ZHOU Hang YANG Chang-wei DENG Wei-ting 《Journal of Central South University》 2025年第9期3427-3446,共20页
Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear ... Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests. 展开更多
关键词 transparent sand fused quartz undrained cyclic simple shear tests dynamic characteristics initial shear stress
在线阅读 下载PDF
Effects of bacterial strains on undrained cyclic behavior of bio-cemented sand considering wetting and drying cycles
6
作者 Nilanjana Banik Rajib Sarkar 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期432-452,共21页
The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated s... The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated sand has not been well established in the literature considering cyclic loading under undrained conditions.Furthermore,the efficacy of different bacterial strains in enhancing the cyclic properties of MICP-treated sand has not been sufficiently documented.Moreover,the effect of wetting-drying(WD)cycles on the cyclic characteristics of MICP-treated sand is not readily available,which may contribute to the limited adoption of MICP treatment in field applications.In this study,strain-controlled consolidated undrained(CU)cyclic triaxial testing was conducted to evaluate the effects of MICP treatment on standard Ennore sand from India with two bacterial strains:Sporosarcina pasteurii and Bacillus subtilis.The treatment durations of 7 d and 14 d were considered,with an interval of 12 h between treatments.The cyclic characteristics,such as the shear modulus and damping ratio,of the MICP-treated sand with the different bacterial strains have been estimated and compared.Furthermore,the effect of WD cycles on the cyclic characteristics of MICP-treated sand has been evaluated considering 5–15 cycles and aging of samples up to three months.The findings of this study may be helpful in assessing the cyclic characteristics of MICP-treated sand,considering the influence of different bacterial strains,treatment duration,and WD cycles. 展开更多
关键词 Bio-cemented sand Microbial-induced calcite precipitation(MICP)treatment Consolidated undrained(CU)cyclic triaxial testing Cyclic characteristics Wetting-drying(WD)cycles
在线阅读 下载PDF
Experimental study of hollow rectangular bridge column performance under vertical and cyclically bilateral loads 被引量:14
7
作者 Han Qiang Du Xiuli +1 位作者 Yihui Zhou George C. Lee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期433-445,共13页
To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametri... To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametric study is carried out for different axial load ratios, longitudinal reinforcement ratios and lateral reinforcement ratios. The experimental results showed that all tested specimens failed in the flexural failure mode and their ultimate performance was dominated by flexural capacity, which is represented by the rupture/buckling of tensile longitudinal rebars at the bottom of the bridge columns. Biaxial force and displacement hysteresis loops showed significant stiffness and strength degradations, and the pinching effect and coupling interaction effect of both directions severely decrease the structural seismic resistance. However, the measured ductility coefficient varying from 3.5 to 5.7 and the equivalent viscous damping ratio varying from 0.19 and 0.26 can meet the requirements of the seismic design. The hollow RC rectangular bridge columns with configurations of lateral reinforcement in this study have excellent performance under bidirectional earthquake excitations, and may be considered as a substitute for current hollow RC rectangular section configurations described in the Guideline for Seismic Design of Highway Bridges (JTG/T B02-01-2008). The length of the plastic hinge region was found to approach one sixth of the hollow RC rectangular bridge column height for all specimen columns, and it was much less than those specified in the current JTG/T. Thus, the length of the plastic hinge region is more concentrated for RC rectangular hollow bridge columns. 展开更多
关键词 bridge columns hollow section cyclic loading test biaxial bending seismic performance
在线阅读 下载PDF
Seismic performance evaluation of an infilled rocking wall frame structure through quasi-static cyclic testing 被引量:9
8
作者 Pan Peng Wu Shoujun +1 位作者 Wang Haishen Nie Xin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期371-383,共13页
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous ... Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience. 展开更多
关键词 infilled rocking wall frame seismic performance displacement distribution quasi-static cyclic test
在线阅读 下载PDF
Liquefaction proneness of stratified sand-silt layers based on cyclic triaxial tests 被引量:2
9
作者 Arpit Jain Satyendra Mittal Sanjay Kumar Shukla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1826-1845,共20页
Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified san... Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified sand specimens embedded with the silt layers to investigate the liquefaction failures and void-redistribution at confining stress of 100 kPa under stress-controlled mode.The loosening of underlying sand mass and hindrance to pore-water flow caused localized bulging at the sand-silt interface.It is observed that at a silt thickness of 0.2H(H is the height of the specimen),nearly 187 load cycles were required to attain liquefaction,which was the highest among all the silt thicknesses with a single silt layer.Therefore,0.2H is assumed as the optimum silt thickness(t_(opt)).The silt was placed at the top,middle and bottom of the specimen to understand the effect of silt layer location.Due to the increase in depth of the silt layer from the top position(capped soil state)to the bottom,the cycles to reach liquefaction(N_(cyc,L))increased 2.18 times.Also,when the number of silt layers increased from single to triple,there was an increase of about 880%in N_(cyc,L).The micro-characterization analysis of the soil specimens indicated silty materials transported in upper sections of the specimen due to the dissipated pore pressure.The main parameters,including thickness(t),location(z),cyclic stress ratio(CSR),number of silt layers(n)and modified relative density(D_(r,m)),performed significantly in governing the lique-faction resistance.For this,a multilinear regression model is developed based on critical parameters for prediction of N_(cyc,L).Furthermore,the developed constitutive model has been validated using the data from the present study and earlier findings. 展开更多
关键词 Cyclic triaxial tests Soil stratification Soil liquefaction Regression model
在线阅读 下载PDF
Corrosion Behavior of S450EW Low-alloy Weathering Steel in Cyclically Alternate Corrosion Environments 被引量:5
10
作者 Jun-shan WANG Pei-yang SHI +1 位作者 Cheng-jun LIU Mao-fa JIANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第11期1020-1023,共4页
Weathering steel is widely used in various fields due to its excellent mechanical properties and high corrosion resistance. The effect of chromium content on the S450 EW weathering steel in cyclic immersion test was s... Weathering steel is widely used in various fields due to its excellent mechanical properties and high corrosion resistance. The effect of chromium content on the S450 EW weathering steel in cyclic immersion test was studied. The results indicated that the corrosion resistance of S450 EW weathering steel is closely related to chromium content. The addition of chromium significantly inhibited the weathering steel corrosion. The corrosion rate of experimental steel after 96 h immersion was 1.101 g·m-2·h-1. The rust of S450 EW weathering steel was mainly constituted of Fe OOH and Fe3O4 phase, and the elevation of chromium content promoted the formation of α-Fe OOH. The fine precipitates of the two phases contributed to the formation of dense dust layer of test steel. Furthermore, the increase of chromium is beneficial for the cure of original defects and cracks of the rust layer via the enrichment of chromium. The corrosion potential and the resistance of corrosion process were thus increased, protecting the experimental steel from further corrosion. A S450 EW steel with corrosion resistance more than 1.5 times of Q450NQR1 steel was prepared. 展开更多
关键词 weathering steel cyclic immersion test rust structure chromium corrosion resistance
原文传递
Conceptual study of X-braced frames with different steel grades using cyclic half-scale tests
11
作者 Parviz Ebadi Saeid Sabouri-Ghomi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第3期313-329,共17页
In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are simila... In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are similar. The braces are made of various steel grades to monitor the effects of seismic excitation. Internal stiffeners are employed to limit the local buckling and increase the fracture life of the steel bracing. A heavy central core is introduced at the intersection of the braces to decrease their effective length. Recent seismic specifications are considered in the design of the X-braced frame members to verify their efficiency. The failure modes of the X-braced frames are also illustrated. It is observed that the energy dissipation capacity, ultimate load capacity and ductility of the system increase considerably by using lower grade steel and proposed detailing. Analytical modeling of the specimens using nonlinear finite element software supports the experimental findings. 展开更多
关键词 BRACING low grade steel EXPERIMENTATION cyclic test seismic behavior analytical modeling DUCTILITY
在线阅读 下载PDF
Cyclic behavior test of a new double-arch steel gate
12
作者 LUO Yao-zhi ZHU Shi-zhe CHEN Xi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第11期1731-1739,共9页
A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designe... A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designed to bear bilateral loads. To research the cyclic behavior of the new double-arch structure, a scale-model cyclic test was conducted. First, the test setup and test method were presented in detail, and according to the test results, the cyclic behavior and failure characteristics of this structure were discussed. Then by analyzing the test cyclic envelope curve, it was found the curve was divided into three stages: the elastic stage, the local plastic stage and the failure stage at the local yield point and structural yield point. The gate model has local yield strength and structural yield strength, with both their values being bigger than that of the designing load. Therefore, the gate is safe enough for the projects. At last, dynamic property of the gate was analyzed considering additional mass of the water. It was found that the tidal bore shock would not cause resonance vibration of the gate. 展开更多
关键词 Double-arch steel gate Cyclic behavior test Cyclic envelope curve Dynamic property
在线阅读 下载PDF
Assessment of cyclic deformation and critical stress amplitude of jointed rocks via cyclic triaxial testing
13
作者 Waranga Habaraduwa Peellage Behzad Fatahi Haleh Rasekh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1370-1390,共21页
Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric... Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased. 展开更多
关键词 Cyclic triaxial test Jointed rock Joint surface Confining pressure Cyclic deviatoric stress amplitude FAILURE Residual deformation Dissipated energy
在线阅读 下载PDF
Cyclic Shear Tests on Key Connection Joints of Modularized Constructions
14
作者 Deshen Chen Xiaofei Jin +3 位作者 Huajie Wang Hongliang Qian Deci Chang Feng Fan 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第3期13-20,共8页
Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This... Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions. 展开更多
关键词 modularized construction assembled connection joint cyclic shear test seismic performance
在线阅读 下载PDF
Cyclic shear behavior of en-echelon joints under constant normal stiffness conditions 被引量:1
15
作者 Bin Wang Yujing Jiang +3 位作者 Qiangyong Zhang Hongbin Chen Richeng Liu Yuanchao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3419-3436,共18页
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit... To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles. 展开更多
关键词 En-echelon joint Cyclic shear tests Shear stress Normal displacement Constant normal stiffness(CNS)
在线阅读 下载PDF
Evolution of mechanical parameters of Shuangjiangkou granite under different loading cycles and stress paths 被引量:1
16
作者 Liangjie Gu Xia-Ting Feng +2 位作者 Rui Kong Chengxiang Yang Yuelin Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1113-1126,共14页
Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und... Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed. 展开更多
关键词 Triaxial cyclic loading and unloading test Stress path Deformation modulus and elastic deformation increment ratios Fracture degree Cohesion and internal friction angle
在线阅读 下载PDF
An improved method to calculate the rock brittleness index PEECR based on linear energy storage law 被引量:1
17
作者 Fengqiang Gong Yiru Zuo +1 位作者 Song Luo Yunliang Wang 《Deep Resources Engineering》 2024年第1期27-40,共14页
The peak elastic strain energy consumption ratio(PEECR)is a rock brittleness index proposed by Gong and Wang.In the present study,based on the linear energy storage law of rock under triaxial compression,a new method ... The peak elastic strain energy consumption ratio(PEECR)is a rock brittleness index proposed by Gong and Wang.In the present study,based on the linear energy storage law of rock under triaxial compression,a new method was proposed to calculate the PEECR.The PEECR uses a simplified method to calculate the peak elastic strain energy.To solve this problem accurately,triaxial cyclic loading-unloading compression tests were carried out on shale.Strain energy parameters were calculated from the test curves.The results show that there is a linear relationship between the elastic strain energy and input strain energy,indicating that the linear energy storage law in rock is applicable to triaxial compression state.The universality of the linear energy storage law of rock under triaxial compression is also verified by the data in the published literature.Then,the peak elastic strain energy can be accurately determined using the linear energy storage law,and the PEECR is improved based on this.Finally,the PEECR and the improved PEECR were compared using the triaxial cyclic loading-unloading compression tests on three rocks(shale,red sandstone and granite),and the improved PEECR was compared with 11 existing energy-based brittleness indexes.The results show that the improved PEECR can further reflect the rock brittleness more accurately. 展开更多
关键词 Rock brittleness index Linear energy storage law Peak elastic strain energy Triaxial cyclic loading-unloading compression test
在线阅读 下载PDF
Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading
18
作者 Qiong Wu Zhiqi Liu +6 位作者 Huiming Tang Liangqing Wang Xiaoxue Huo Zhen Cui Shiyu Li Bo Zhang Zhiwei Lin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3063-3079,共17页
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake... The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate. 展开更多
关键词 Discontinuities with different joint wall material(DDJM) Discontinuities with identical joint wall material(DIJM) Cyclic shear test Shear strength deterioration Joint surface morphology Shear displacement amplitude Shear rate Normal stress
在线阅读 下载PDF
Assessment of liquefaction potential based on shear wave velocity:Strain energy approach
19
作者 Mohammad Hassan Baziar Mahdi Alibolandi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3733-3745,共13页
Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and str... Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading. 展开更多
关键词 LIQUEFACTION Strain energy capacity Shear wave velocity Cyclic triaxial test Cyclic direct simple shear test Resonant column test Bender element test
在线阅读 下载PDF
Seismic performance of steel reinforced ultra high-strength concrete composite frame joints 被引量:6
20
作者 Yan Changwang Jia Jinqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期439-448,共10页
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens... To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications. 展开更多
关键词 cyclical test axial load ratio volumetric stirrup ratio DUCTILITY strength degradation stiffness degradation steel reinforced ultra high strength concrete beam-column joint
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部