In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of ...In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of laboratory cyclic triaxial, torsional shear and simple shear tests results, was collected and utilized in the ANN model. Several ANN models were developed with different sets of input parameters in order to determine the model with best performance and preciseness. It has been illustrated that the proposed ANN model can predict the measured CRR of the different data set which was not incorporated in the developing phase of the model with the good degree of accuracy. The subsequent sensitivity analysis was performed to compare the effect of each parameter in the model with the laboratory test results. At the end, the participation or relative importance of each parameter in the ANN model was obtained.展开更多
This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective...This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective is to learn whether the presence of a piezoelectric network would change the dynamic characteristics of the system. The background of the research is about vibration reduction of a bladed disk in an aero-engine, and the system is simulated by a lumped parameter model. The dynamic equations of the system are derived, and then the analytical solution corresponding to the eigenvalue problem is given. The vibration responses to single traveling wave excitations (EO excitations) and multiple traveling wave excitations (NEO excitations) are studied. The results show that the presence of a piezoelectric network would change the natural frequencies of the system compared with those of the system with the piezoelectric shunt circuit. The forced response is sensitive to the connection type and the elements of the network. An energy analysis of the electro-mechanical coupling system has been performed to understand its dynamic behavior, and the following conclusion is obtained: a vibration reduction to excitations whose primary har- monic component is not zero can be achieved by a parallel piezoelectric network, while a reduction to other excitations should be based on a series piezoelectric network.展开更多
Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up base...Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.展开更多
The regulatory mechanisms in cellular signaling systems have been studied intensively from the viewpoint that the malfunction of the regulation is thought to be one of the substantial causes of cancer formation. On th...The regulatory mechanisms in cellular signaling systems have been studied intensively from the viewpoint that the malfunction of the regulation is thought to be one of the substantial causes of cancer formation. On the other hand, it is rather difficult to develop the theoretical framework for investigation of the regulatory mechanisms due to their complexity and nonlinearity. In this study, more general approach is proposed for elucidation of characteristics of the stability in cellular signaling systems by construction of mathematical models for a class of cellular signaling systems and stability analysis of the models over variation of the network architectures and the parameter values. The model system is formulated as regulatory network in which every node represents a phosphorylation-dephosphorylation cyclic reaction for respective constituent enzyme. The analysis is performed for all variations of the regulatory networks comprised of two nodes with multiple feedback regulation loops. It is revealed from the analysis that the regulatory networks become mono-stable, bi-stable, tri-stable, or oscillatory and that the negative mutual feedback or positive mutual feedback is favorable for multi-stability, which is augmented by a negatively regulated node with a positive auto-regulation. Furthermore, the multi-stability or the oscillation is more likely to emerge in the case of low value of the Michaelis constant than in the case of high value, implying that the condition of higher saturation levels induces stronger nonlinearity in the networks. The analysis for the parameter regions yielding the multi-stability and the oscillation clarified that the stronger regulation shifts the systems toward multi-stability.展开更多
Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinem...Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinement.The process is analyzed from both operational and reservoir/hydraulic-fracture perspectives.Key sensitivity parameters for the operational component are chosen as the injection rate,lengths of injection and soaking periods and the economic rate limit to shut-in the well.For the reservoir/hydraulic fracturing components,reservoir permeability,hydraulic fracture permeability,effective thickness and half-length are used.These parameters are varied at five levels.A full-factorial experimental design is utilized to run 1250 cases.The study shows that within the ranges studied,the gas-injection process is applied successfully for a 20-year project period with net present values based on the incremental recoveries greater than zero.It is observed that the cycle rate limit,injection and soaking periods must be optimized to maximize the efficiency.The simulation results are used to develop a neural network based proxy model that can be used as a screening tool for the process.The proxy model is validated with blind-cases with a correlation coefficient of 0.96.展开更多
针对L波段数字航空通信系统(L-band digital aeronautic communication system,LDACS)可用频谱资源有限且易受大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出一种基于降维循环谱和残差神经网络的频谱感知方法。首...针对L波段数字航空通信系统(L-band digital aeronautic communication system,LDACS)可用频谱资源有限且易受大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出一种基于降维循环谱和残差神经网络的频谱感知方法。首先理论推导分析了DME信号的循环谱特征;然后利用Fisher判别率(Fisher discriminant rate,FDR)提取循环频率能量最大的向量,通过主成分分析(principal component analysis,PCA)进行预处理特征增强;最后给出数据处理后的循环谱向量与卷积神经网络相结合的实现过程,实现了DME信号的有效检测。仿真结果表明,该方法对噪声不敏感,当信噪比不低于-15 dB时,平均检测概率大于90%。当信噪比不低于-14 dB,检测概率接近100%。展开更多
随着通信技术的发展,频谱感知技术已经成为解决频谱资源稀缺的重要解决手段之一。针对传统的频谱感知方法在低信噪比(Signal to Noise Ratio,SNR)下准确率较低的问题,提出一种基于残差神经网络和注意力机制相结合的正交频分复用(Orthogo...随着通信技术的发展,频谱感知技术已经成为解决频谱资源稀缺的重要解决手段之一。针对传统的频谱感知方法在低信噪比(Signal to Noise Ratio,SNR)下准确率较低的问题,提出一种基于残差神经网络和注意力机制相结合的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)频谱感知方法。将频谱感知问题转化为图像二分类任务。通过分析OFDM信号的循环自相关特征,将其灰度处理以生成循环自相关灰度图像。利用改进后的残差神经网络进行训练,提取这些灰度图像的深层特征,使用测试数据验证所得到的频谱感知模型。仿真实验结果表明,在低SNR条件下,所提方法表现出更出色的频谱感知性能,优于传统频谱感知技术。展开更多
文摘In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of laboratory cyclic triaxial, torsional shear and simple shear tests results, was collected and utilized in the ANN model. Several ANN models were developed with different sets of input parameters in order to determine the model with best performance and preciseness. It has been illustrated that the proposed ANN model can predict the measured CRR of the different data set which was not incorporated in the developing phase of the model with the good degree of accuracy. The subsequent sensitivity analysis was performed to compare the effect of each parameter in the model with the laboratory test results. At the end, the participation or relative importance of each parameter in the ANN model was obtained.
文摘This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective is to learn whether the presence of a piezoelectric network would change the dynamic characteristics of the system. The background of the research is about vibration reduction of a bladed disk in an aero-engine, and the system is simulated by a lumped parameter model. The dynamic equations of the system are derived, and then the analytical solution corresponding to the eigenvalue problem is given. The vibration responses to single traveling wave excitations (EO excitations) and multiple traveling wave excitations (NEO excitations) are studied. The results show that the presence of a piezoelectric network would change the natural frequencies of the system compared with those of the system with the piezoelectric shunt circuit. The forced response is sensitive to the connection type and the elements of the network. An energy analysis of the electro-mechanical coupling system has been performed to understand its dynamic behavior, and the following conclusion is obtained: a vibration reduction to excitations whose primary har- monic component is not zero can be achieved by a parallel piezoelectric network, while a reduction to other excitations should be based on a series piezoelectric network.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51190091)the National Natural Science Foundation of China(Grant No.51009045)the Open Research Fund Program of the State Key Laboratory of Water Resources and Hydropower Engineering Science of Wuhan University(Grant No.2012B094)
文摘Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.
文摘The regulatory mechanisms in cellular signaling systems have been studied intensively from the viewpoint that the malfunction of the regulation is thought to be one of the substantial causes of cancer formation. On the other hand, it is rather difficult to develop the theoretical framework for investigation of the regulatory mechanisms due to their complexity and nonlinearity. In this study, more general approach is proposed for elucidation of characteristics of the stability in cellular signaling systems by construction of mathematical models for a class of cellular signaling systems and stability analysis of the models over variation of the network architectures and the parameter values. The model system is formulated as regulatory network in which every node represents a phosphorylation-dephosphorylation cyclic reaction for respective constituent enzyme. The analysis is performed for all variations of the regulatory networks comprised of two nodes with multiple feedback regulation loops. It is revealed from the analysis that the regulatory networks become mono-stable, bi-stable, tri-stable, or oscillatory and that the negative mutual feedback or positive mutual feedback is favorable for multi-stability, which is augmented by a negatively regulated node with a positive auto-regulation. Furthermore, the multi-stability or the oscillation is more likely to emerge in the case of low value of the Michaelis constant than in the case of high value, implying that the condition of higher saturation levels induces stronger nonlinearity in the networks. The analysis for the parameter regions yielding the multi-stability and the oscillation clarified that the stronger regulation shifts the systems toward multi-stability.
文摘Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinement.The process is analyzed from both operational and reservoir/hydraulic-fracture perspectives.Key sensitivity parameters for the operational component are chosen as the injection rate,lengths of injection and soaking periods and the economic rate limit to shut-in the well.For the reservoir/hydraulic fracturing components,reservoir permeability,hydraulic fracture permeability,effective thickness and half-length are used.These parameters are varied at five levels.A full-factorial experimental design is utilized to run 1250 cases.The study shows that within the ranges studied,the gas-injection process is applied successfully for a 20-year project period with net present values based on the incremental recoveries greater than zero.It is observed that the cycle rate limit,injection and soaking periods must be optimized to maximize the efficiency.The simulation results are used to develop a neural network based proxy model that can be used as a screening tool for the process.The proxy model is validated with blind-cases with a correlation coefficient of 0.96.
文摘随着通信技术的发展,频谱感知技术已经成为解决频谱资源稀缺的重要解决手段之一。针对传统的频谱感知方法在低信噪比(Signal to Noise Ratio,SNR)下准确率较低的问题,提出一种基于残差神经网络和注意力机制相结合的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)频谱感知方法。将频谱感知问题转化为图像二分类任务。通过分析OFDM信号的循环自相关特征,将其灰度处理以生成循环自相关灰度图像。利用改进后的残差神经网络进行训练,提取这些灰度图像的深层特征,使用测试数据验证所得到的频谱感知模型。仿真实验结果表明,在低SNR条件下,所提方法表现出更出色的频谱感知性能,优于传统频谱感知技术。