Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading charac...Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading characteristics are different from the loading ones, therefore there is hysteresis between the unloading and loading curves. Compressive hysteresis is the main factor that causes sealing hysteresis. The leakage rate of PTFE complies with the power law before it enters the relatively stable region. Lastly, the effect of working pressure on the compressive and sealing characteristics is discussed. The experimental results show that the working pressure has little effect on compressive deformation but has a great influence on leakage rate.展开更多
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f...Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.展开更多
A new gold self-relay catalytic annulation/nucleophilic substitution cascade of 1,3-enyne acetates with cyclic ether acetals is reported,enabling highly diastereoselective access to cyclic etherified cyclopentenones w...A new gold self-relay catalytic annulation/nucleophilic substitution cascade of 1,3-enyne acetates with cyclic ether acetals is reported,enabling highly diastereoselective access to cyclic etherified cyclopentenones with cyclic quaternary centers in moderate to good yields and>19∶1 dr.This catalysis enables the direct construction of two types of carboncyclic skeletons by adjusting the olefin types of 1,3-enyne acetates.When 1,3-enyne acetates bearing a cyclic alkene unit were used,5~6 fused bicarbocyclic products were diastereoselectively synthesized,whereas the reaction of acyclic 1,3-enyne acetates resulted in five-memebered carbocyclic framework.Notably,cyclic ether acetals are commonly used as protecting groups in traditional multistep organic syntheses,and in this reaction,such reagents serve as electrophilic cyclic ether precursors,achieving new uses for old reagents.The current method demonstrates good functional group compatibility,a broad substrate scope and high diastereoselectivity,providing a new synthetic strategy toward functionalized cyclopentenones.展开更多
This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstruc...This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstructural degradation is decomposed into two parts:an instantaneous part arising from monotonic loading and a fatigue-related one induced by cyclic loading,relating to the initiation and propagation of microcracks.The inelastic deformation arises directly from frictional sliding along microcracks,inherently coupled with the damage effect.A fractional plastic flow rule is introduced using stress-fractional plasticity operations and covariant transformation approach,instead of classical plastic flow function.Additionally,the progression of fatigue damage is intricately tied to subcracks and can be calculated through application of a convolution law.The number of loading cycles serves as an integration variable,establishing a connection between inelastic deformation and the evolution of fatigue damage.In order to verify the accuracy of the proposed model,comparison between analytical solutions and experimental data are carried out on three different rocks subjected to conventional triaxial compression and cyclic loading tests.The evolution of damage variables is also investigated along with the cumulative deformation and fatigue lifetime.The improvement of the fractional model is finally discussed by comparing with an existing associated fatigue model in literature.展开更多
The current study focuses on investigating the effect of in-plane cyclic shear(IPCS)on the microstructure and texture evolution in an AZX311 Mg alloy sheet using a customized in-plane shear jig.Samples were deformed a...The current study focuses on investigating the effect of in-plane cyclic shear(IPCS)on the microstructure and texture evolution in an AZX311 Mg alloy sheet using a customized in-plane shear jig.Samples were deformed at two distinct strain levels of 0.05 and 0.10,with tests conducted over different numbers of deformation cycles at each strain level.A detailed microstructural investigation using electron backscatter diffraction(EBSD)revealed that in-plane cyclic shear induced the formation of numerous tensile twins(TTWs)in the alloy sheet.Both the shear strain and the number of deformation cycles contributed to an increase in the twin volume fraction(TVF),which played a critical role in texture evolution.Notably,unlike in-plane shear(IPS)deformation,where two satellite peaks appear in opposite quadrants,in-plane cyclic shear resulted in satellite peaks across all four quadrants of the polefigure.The evolution of texture components across all four quadrants arises from the load variations under forward and reverse loading during cyclic deformation.Thus,in-plane cyclic shear deformation can generate texture components along nearly all directions in the polefigures.Additionally,microstructural and microtextural analyses revealed that TTW is the dominant deformation mechanism,contributing to texture evolution.Furthermore,the resolved shear stress(RSS)analysis indicated that prismatic slip activity predominantly governs dislocation slip behavior.展开更多
Designing catalysts with high catalytic activity and stability is the key to achieve the commercial application of MgH_(2).Herein,the sulfur doped Ti_(3)C_(2)(S-Ti_(3)C_(2))was successfully prepared by heat treatment ...Designing catalysts with high catalytic activity and stability is the key to achieve the commercial application of MgH_(2).Herein,the sulfur doped Ti_(3)C_(2)(S-Ti_(3)C_(2))was successfully prepared by heat treatment of Ti_(3)C_(2)MXene under Ar/H_(2)S atmosphere to facilitate the hydrogen release and uptake from MgH_(2).The S-Ti_(3)C_(2)exhibited pleasant catalytic effect on the hydriding/dehydriding kinetics and cyclic stability of MgH_(2).The addition of 5 wt%S-Ti_(3)C_(2)into MgH_(2)resulted in a reduction of 114℃in the starting dehydriding temperature compared to pure MgH_(2).MgH_(2)+5 wt%S-Ti_(3)C_(2)sample could quickly release 6.6 wt%hydrogen in 17 min at 220℃,and 6.8 wt%H_(2)was absorbed in 25 min at 200℃.Cyclic testing revealed that MgH_(2)+5 wt%S-Ti_(3)C_(2)system achieved a reversible hydrogen capacity of 6.5 wt%.Characterization analysis demonstrated that Ti-species(Ti0,Ti^(2+),Ti-S,and Ti^(3+))as active species significantly lowered the dehydrogenation temperature and promoted the re-/dehydrogenation kinetics of MgH_(2),and sulfur doping can effectively improve the stability of Ti0 and Ti^(3+),contributing to the improvement of cyclic stability of MgH_(2).This study provides strategy for the construction of catalysts for hydrogen storage materials.展开更多
In the directed energy deposition(DED)process with high heat input,repeated heating and cooling cycles in the deposited layers have a signifcant efect on the microstructure.Because of the diferences in the cyclic numb...In the directed energy deposition(DED)process with high heat input,repeated heating and cooling cycles in the deposited layers have a signifcant efect on the microstructure.Because of the diferences in the cyclic numbers and peak temperatures from the lower layer to the upper layer,inhomogeneous microstructures are formed in the as-built components.In this work,a cyclic heat treatment(CHT)with gradual cooling was used to simulate the thermal process during the DED process of Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe(Ti5321)near-βTi alloy.The efect of CHT on the microstructural evolution,especially the spheroidization ofαphase,was investigated.As the CHT cycle increased,the volume fraction ofαphase gradually increased from 35.9%after 1 cycle to 60.9%after 100 cycles,and the length ofαphase frst increased and then gradually decreased,while the width ofαphase increased slowly.The aspect ratio ofαphase decreased from 9.90±3.39 after 1 cycle to 2.37±0.87 after 100 cycles,implying that CHT inducedαphase spheroidization.This phenomenon resulted from both the boundary splitting mechanism and the termination migration mechanism during CHT.The evolution of microstructure afects its mechanical properties.As the CHT cycles increased,the hardness increased overall,from 342.8±5.3 HV after 1 cycle to 400.3±3.4 HV after 100 cycles.This work provides a potential method to tailor the microstructure of near-βTi alloys by heat treatment alone,especially for non-deformable additively manufactured metal components.展开更多
Rich-nickel layered ternary NCM811 has been widely used in the field of electric vehicles ascribed to its high theoretical specific capacity.However,poor cycling stability and rate-performance hindered its further dev...Rich-nickel layered ternary NCM811 has been widely used in the field of electric vehicles ascribed to its high theoretical specific capacity.However,poor cycling stability and rate-performance hindered its further development.Herein,different amounts of nitrogen-doped carbon were wrapped on the surface of NCM811 via a facile rheological phase method by regulating the amount of dopamine hydrochloride.The effects of the coating amounts on the structure and electrochemical performance are investigated.The DFT calculation,XRD,SEM and XPS reveal that an appropriate amount of nitrogen-doped carbon coating could uniformly form a protective layer on the NCM811 surface and the introduced N could anchor Ni atoms to inhibit the Li^(+)/Ni^(2+)mixing,but excessive amount would reduce Ni^(3+)to Ni^(2+)so as to conversely aggravate Li^(+)/Ni^(2+)mixing.Among the samples,the NCM811-CN0.75 sample exhibits the most excellent electrochemical performance,delivering a high-rate capacity of 151.6 mA·h/g at 10C,and long-term cyclability with 82.2%capacity retention after 300 cycles at 5C,exhibiting remarkable rate-performance and cyclability.展开更多
The design of low-cost and high-performance cyclic olefin copolymers remains challenging.Ethylene copolymers with dicyclopentadiene(DCPD)were prepared using Ph_(2)C(Cp)(Flu)ZrCl_(2)(Cat.1),rac-Et(Ind)_(2)ZrCl_(2)(Cat....The design of low-cost and high-performance cyclic olefin copolymers remains challenging.Ethylene copolymers with dicyclopentadiene(DCPD)were prepared using Ph_(2)C(Cp)(Flu)ZrCl_(2)(Cat.1),rac-Et(Ind)_(2)ZrCl_(2)(Cat.2),Me_(2)C(Cp)(Flu)ZrCl_(2)(Cat.3)andMe_(2)Si(Ind)_(2)ZrCl_(2)(Cat.4)combined with[Ph_(3)C][B(C_(6)F_(5))_(4)]/iBu_(3)Al.Ni(acac)_(2)/iBu_(3)Al was then used to catalyze the hydrogenation of the intracyclic double bonds of ethylene/DCPD copolymers.The results showed that compared to C_(2) symmetric catalysts(Cat.2 and Cat.4),Cs symmetric catalysts(Cat.1 and Cat.3)facilitated the incorporation of copolymers with higher DCPD.1H-and ^(13)C-NMR spectra indicated that ethylene/DCPD copolymerization occurred via enhancement of the norbornene ring.Additionally,measurement of the reactivity ratios provided further confirmation that the copolymers had random sequence distributions.All these samples demonstrated transmittance values above 90%in the visible wavelength range from 400 nm to 800 nm.By changing the fraction of monomers,the glass transition temperature,refractive index,Young's modulus,and tensile strength of the copolymer increased as the incorporation of DCPD increased,whereas the Abbe number and elongation at break decreased.Compared with ethylene/norbornene and ethylene/tetracyclicdodecene copolymers,ethylene/DCPD copolymers,with excellent optical and mechanical properties,are promising materials.展开更多
Geosynthetic-encased stone column(GESC)technology for strengthening soft clay offers significant advantages in terms of cost-effectiveness,environmental sustainability,and engineering applicability.It is widely applie...Geosynthetic-encased stone column(GESC)technology for strengthening soft clay offers significant advantages in terms of cost-effectiveness,environmental sustainability,and engineering applicability.It is widely applied in treating soft foundations for railways,bridges,and embankments.This study evaluates the cyclic response of the geosynthetic-encased steel slag column(GESSC)composite foundation employing three-dimensional nonlinear finite element analysis.A numerical study is conducted to assess the cyclic response of floating GESSC considering the influence of key design variables,including cyclic load amplitude,loading frequency,geosynthetic encasement stiffness,and length-to-diameter ratio.Results show that both cyclic load amplitude and frequency affect the cumulative settlement and excess pore pressure within the GESSC foundation.Within specified limits,increasing the encasement stiffness and column length can significantly improve the GESSC load-bearing characteristics.The parametric study suggests an optimal geosynthetic encasement stiffness for the field prototype columns within the range of 4480–5760 kN/m and a critical steel slag column length of 10 times the column diameter.展开更多
The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated s...The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated sand has not been well established in the literature considering cyclic loading under undrained conditions.Furthermore,the efficacy of different bacterial strains in enhancing the cyclic properties of MICP-treated sand has not been sufficiently documented.Moreover,the effect of wetting-drying(WD)cycles on the cyclic characteristics of MICP-treated sand is not readily available,which may contribute to the limited adoption of MICP treatment in field applications.In this study,strain-controlled consolidated undrained(CU)cyclic triaxial testing was conducted to evaluate the effects of MICP treatment on standard Ennore sand from India with two bacterial strains:Sporosarcina pasteurii and Bacillus subtilis.The treatment durations of 7 d and 14 d were considered,with an interval of 12 h between treatments.The cyclic characteristics,such as the shear modulus and damping ratio,of the MICP-treated sand with the different bacterial strains have been estimated and compared.Furthermore,the effect of WD cycles on the cyclic characteristics of MICP-treated sand has been evaluated considering 5–15 cycles and aging of samples up to three months.The findings of this study may be helpful in assessing the cyclic characteristics of MICP-treated sand,considering the influence of different bacterial strains,treatment duration,and WD cycles.展开更多
Three sandstone specimens common in rock engineering were selected to study the differences in the mechanical properties of rocks with different lithologies.The development and expansion of the internal cracks in the ...Three sandstone specimens common in rock engineering were selected to study the differences in the mechanical properties of rocks with different lithologies.The development and expansion of the internal cracks in the specimens were observed by combining the simulation system with the acoustic emission system.Through the combination of dynamic and static stresses,the deformation and damage of rocks under deep rock excavation and blasting were simulated.As the results show,the acoustic emission events of specimens with different lithologies under combined static and dynamic cyclic loading can be roughly divided into three phases:weakening,stabilizing,and surging periods.In addition,the acoustic emission characteristics of specimens with different lithologies show general consistency in different compression phases.The degree of fragmentation of specimens increases with the applied stress level;therefore,the stress level is one of the important factors influencing the damage pattern of specimens.The acoustic emission system was used to simulate the deformation and damage of rocks subjected to deep rock body excavation and engineering blasting.Cyclic dynamic perturbations under sinusoidal waves with a frequency of 5 Hz,a loading rate of 0.1 mm/min,a cyclic amplitude of 5 MPa,and a loading rate of 0.1 mm/min were applied to the three rock samples during the experiments.Among them,the fine-grained sandstones are the most sensitive to the sinusoidal cyclic perturbation,followed by the muddy siltstone and the medium-grained sandstones.On this basis,the acoustic emission energy release characteristics were analyzed,and the waveform characteristics in the damage evolution of the specimen under dynamic perturbation were studied by extracting the key points and searching for the main frequency eigenvalues.展开更多
This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain...This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies.展开更多
Salt cavern energy storage technology contributes to energy reserves and renewable energy scale-up.This study focuses on salt cavern gas storage in Jintan to assess the long-term stability of its surrounding rock unde...Salt cavern energy storage technology contributes to energy reserves and renewable energy scale-up.This study focuses on salt cavern gas storage in Jintan to assess the long-term stability of its surrounding rock under frequent operation.The fatigue test results indicate that stress holding significantly reduces fatigue life,with the magnitude of stress level outweighing the duration of holding time in determining peak strain.Employing a machine learning approach,the impact of various factors on fatigue life and peak strain was quantified,revealing that higher stress limits and stress holding adversely impact the fatigue index,whereas lower stress limits and rate exhibit a positive effect.A novel fatigue-creep composite damage constitutive model is constructed,which is able to consider stress magnitude,rate,and stress holding.The model,validated through multi-path tests,accurately captures the elasto-viscous behavior of salt rock during loading,unloading,and stress holding.Sensitivity analysis further reveals the time-and stress-dependent behavior of model parameters,clarifying that strain changes stem not only from stress variations but are also influenced by alterations in elasto-viscous parameters.This study provides a new method for the mechanical assessment of salt cavern gas storage surrounding rocks.展开更多
Cyclic changes in the internal pressure of compressed air energy storage reservoirs in abandoned coal mines result in complex alternating loads on the rocks surrounding the energy storage reservoirs.These complex alte...Cyclic changes in the internal pressure of compressed air energy storage reservoirs in abandoned coal mines result in complex alternating loads on the rocks surrounding the energy storage reservoirs.These complex alternating loads can be regarded as multi-stage constant-amplitude cyclic loads following simplification.In this paper,the mechanical responses and acoustic emission(AE)characteristics of red sandstone with five bedding dip angles(0°,30°,45°,60°,and 90°)under such loads are investigated,and the damage evolution processes of the five specimens are revealed from both quantitative and microscopic perspectives.The results show that the fatigue deformation characteristics of the specimens are affected by the bedding dip angle.Under cyclic loads,the axially irreversible plastic deformations of the rocks increase,their elastic stiffness increases,their crack volumetric strain increases and then decreases,and their AE cumulative count/energy curves exhibit a ladder shape.A damage evolution model based on the crack volumetric strain is proposed,and the damage evolution process is divided into two stages:a rapid increase stage and a tendency toward stabilization stage.Through cluster analysis,the AE events are used to classify the damage into three categories:small-sized localized damage,large-sized tensile damage,and large-sized shear damage.Finally,the MohreCoulomb criterion is applied to analyze the relationship between the failure modes of the red sandstone specimens and the dip angle of the bedding.The results of this study will help to predict the stability and safety of compressed air energy storage reservoirs in abandoned coal mines.展开更多
The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,...The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,experience one-way cyclic tensile loads at inclinations ranging from 0°(horizontal)to 90°(vertical).However,the combined effects of cyclic loading and load inclination remain inadequately understood.This study presents findings from centrifuge tests conducted on rough rigid piles installed in dense sand samples.The results demonstrate that load inclinations significantly influence both cyclic response and ultimate capacity of the piles.Based on the observed cyclic response characteristics,the vertical cyclic load amplitude should not exceed 25%of the ultimate bearing capacity to maintain pile stability.A power expression(with exponent m values ranging from 0.055 to 0.065)is proposed for predicting cumulative pile displacement under unidirectional cyclic loading at inclinations from 0°to 60°.The cyclic response exhibits reduced sensitivity to horizontal cyclic load magnitude,with m-value increasing from 0.06 to 0.14 as load magnitude increases from 0.3 to 0.9.For piles maintaining stability under oblique cyclic loading,the average normalized secant stiffness exceeds 1 and increases with decreasing inclination,indicating enhanced pile stiffness under cyclic loading.For load inclinations below 30°,pile stiffness can be determined using logarithmic function.展开更多
基金Funded by the Fund of the State Key Laboratory of Technologies in Space Cryogenic Propellants(No.SKLTSCP1210)
文摘Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading characteristics are different from the loading ones, therefore there is hysteresis between the unloading and loading curves. Compressive hysteresis is the main factor that causes sealing hysteresis. The leakage rate of PTFE complies with the power law before it enters the relatively stable region. Lastly, the effect of working pressure on the compressive and sealing characteristics is discussed. The experimental results show that the working pressure has little effect on compressive deformation but has a great influence on leakage rate.
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
文摘Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.
文摘A new gold self-relay catalytic annulation/nucleophilic substitution cascade of 1,3-enyne acetates with cyclic ether acetals is reported,enabling highly diastereoselective access to cyclic etherified cyclopentenones with cyclic quaternary centers in moderate to good yields and>19∶1 dr.This catalysis enables the direct construction of two types of carboncyclic skeletons by adjusting the olefin types of 1,3-enyne acetates.When 1,3-enyne acetates bearing a cyclic alkene unit were used,5~6 fused bicarbocyclic products were diastereoselectively synthesized,whereas the reaction of acyclic 1,3-enyne acetates resulted in five-memebered carbocyclic framework.Notably,cyclic ether acetals are commonly used as protecting groups in traditional multistep organic syntheses,and in this reaction,such reagents serve as electrophilic cyclic ether precursors,achieving new uses for old reagents.The current method demonstrates good functional group compatibility,a broad substrate scope and high diastereoselectivity,providing a new synthetic strategy toward functionalized cyclopentenones.
基金Fundamental Research Funds for the Central Universities(Grant No.B230201059)for the support.
文摘This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstructural degradation is decomposed into two parts:an instantaneous part arising from monotonic loading and a fatigue-related one induced by cyclic loading,relating to the initiation and propagation of microcracks.The inelastic deformation arises directly from frictional sliding along microcracks,inherently coupled with the damage effect.A fractional plastic flow rule is introduced using stress-fractional plasticity operations and covariant transformation approach,instead of classical plastic flow function.Additionally,the progression of fatigue damage is intricately tied to subcracks and can be calculated through application of a convolution law.The number of loading cycles serves as an integration variable,establishing a connection between inelastic deformation and the evolution of fatigue damage.In order to verify the accuracy of the proposed model,comparison between analytical solutions and experimental data are carried out on three different rocks subjected to conventional triaxial compression and cyclic loading tests.The evolution of damage variables is also investigated along with the cumulative deformation and fatigue lifetime.The improvement of the fractional model is finally discussed by comparing with an existing associated fatigue model in literature.
基金supported by the Science and Engineering Research Board(SERB),a statutory body of the Department of Science&Technology(DST),Government of India through the Start-up Research Grant(SRG)scheme(File No.SRG/2020/000341).
文摘The current study focuses on investigating the effect of in-plane cyclic shear(IPCS)on the microstructure and texture evolution in an AZX311 Mg alloy sheet using a customized in-plane shear jig.Samples were deformed at two distinct strain levels of 0.05 and 0.10,with tests conducted over different numbers of deformation cycles at each strain level.A detailed microstructural investigation using electron backscatter diffraction(EBSD)revealed that in-plane cyclic shear induced the formation of numerous tensile twins(TTWs)in the alloy sheet.Both the shear strain and the number of deformation cycles contributed to an increase in the twin volume fraction(TVF),which played a critical role in texture evolution.Notably,unlike in-plane shear(IPS)deformation,where two satellite peaks appear in opposite quadrants,in-plane cyclic shear resulted in satellite peaks across all four quadrants of the polefigure.The evolution of texture components across all four quadrants arises from the load variations under forward and reverse loading during cyclic deformation.Thus,in-plane cyclic shear deformation can generate texture components along nearly all directions in the polefigures.Additionally,microstructural and microtextural analyses revealed that TTW is the dominant deformation mechanism,contributing to texture evolution.Furthermore,the resolved shear stress(RSS)analysis indicated that prismatic slip activity predominantly governs dislocation slip behavior.
基金supported by the National Natural Science Foundation of China(U22A20120,52071135,51871090,U1804135,and 52301269)the Natural Science Foundation of Hebei Province for Innovation Groups Program(C2022203003)Fundamental Research Funds for the Universities of Henan Province(NSFRF220201).
文摘Designing catalysts with high catalytic activity and stability is the key to achieve the commercial application of MgH_(2).Herein,the sulfur doped Ti_(3)C_(2)(S-Ti_(3)C_(2))was successfully prepared by heat treatment of Ti_(3)C_(2)MXene under Ar/H_(2)S atmosphere to facilitate the hydrogen release and uptake from MgH_(2).The S-Ti_(3)C_(2)exhibited pleasant catalytic effect on the hydriding/dehydriding kinetics and cyclic stability of MgH_(2).The addition of 5 wt%S-Ti_(3)C_(2)into MgH_(2)resulted in a reduction of 114℃in the starting dehydriding temperature compared to pure MgH_(2).MgH_(2)+5 wt%S-Ti_(3)C_(2)sample could quickly release 6.6 wt%hydrogen in 17 min at 220℃,and 6.8 wt%H_(2)was absorbed in 25 min at 200℃.Cyclic testing revealed that MgH_(2)+5 wt%S-Ti_(3)C_(2)system achieved a reversible hydrogen capacity of 6.5 wt%.Characterization analysis demonstrated that Ti-species(Ti0,Ti^(2+),Ti-S,and Ti^(3+))as active species significantly lowered the dehydrogenation temperature and promoted the re-/dehydrogenation kinetics of MgH_(2),and sulfur doping can effectively improve the stability of Ti0 and Ti^(3+),contributing to the improvement of cyclic stability of MgH_(2).This study provides strategy for the construction of catalysts for hydrogen storage materials.
基金sponsored by the National Natural Science Foundation of China(No.52271108)the Foundation of Xi’an Key Laboratory of High-Performance Titanium Alloy(No.NIN-HTL-2022-02)+2 种基金the Natural Science Foundation of Shanghai(No.21ZR1445100)the Shanghai Science and Technology Development Funds(No.22QB1406500)the ECU DVC Strategic Research Support Fund(No.23965).
文摘In the directed energy deposition(DED)process with high heat input,repeated heating and cooling cycles in the deposited layers have a signifcant efect on the microstructure.Because of the diferences in the cyclic numbers and peak temperatures from the lower layer to the upper layer,inhomogeneous microstructures are formed in the as-built components.In this work,a cyclic heat treatment(CHT)with gradual cooling was used to simulate the thermal process during the DED process of Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe(Ti5321)near-βTi alloy.The efect of CHT on the microstructural evolution,especially the spheroidization ofαphase,was investigated.As the CHT cycle increased,the volume fraction ofαphase gradually increased from 35.9%after 1 cycle to 60.9%after 100 cycles,and the length ofαphase frst increased and then gradually decreased,while the width ofαphase increased slowly.The aspect ratio ofαphase decreased from 9.90±3.39 after 1 cycle to 2.37±0.87 after 100 cycles,implying that CHT inducedαphase spheroidization.This phenomenon resulted from both the boundary splitting mechanism and the termination migration mechanism during CHT.The evolution of microstructure afects its mechanical properties.As the CHT cycles increased,the hardness increased overall,from 342.8±5.3 HV after 1 cycle to 400.3±3.4 HV after 100 cycles.This work provides a potential method to tailor the microstructure of near-βTi alloys by heat treatment alone,especially for non-deformable additively manufactured metal components.
基金Project(2021H0028) supported by the Natural Scienceof Fujian Province,ChinaProject(JAT200455) supported by the Fujian Provincial Young and Middle-aged Teacher Education Project,ChinaProject(fma2023003) supported by the Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications,China。
文摘Rich-nickel layered ternary NCM811 has been widely used in the field of electric vehicles ascribed to its high theoretical specific capacity.However,poor cycling stability and rate-performance hindered its further development.Herein,different amounts of nitrogen-doped carbon were wrapped on the surface of NCM811 via a facile rheological phase method by regulating the amount of dopamine hydrochloride.The effects of the coating amounts on the structure and electrochemical performance are investigated.The DFT calculation,XRD,SEM and XPS reveal that an appropriate amount of nitrogen-doped carbon coating could uniformly form a protective layer on the NCM811 surface and the introduced N could anchor Ni atoms to inhibit the Li^(+)/Ni^(2+)mixing,but excessive amount would reduce Ni^(3+)to Ni^(2+)so as to conversely aggravate Li^(+)/Ni^(2+)mixing.Among the samples,the NCM811-CN0.75 sample exhibits the most excellent electrochemical performance,delivering a high-rate capacity of 151.6 mA·h/g at 10C,and long-term cyclability with 82.2%capacity retention after 300 cycles at 5C,exhibiting remarkable rate-performance and cyclability.
基金supported by the National Natural Science Foundation of China(Nos.52130307 and 5240031453).
文摘The design of low-cost and high-performance cyclic olefin copolymers remains challenging.Ethylene copolymers with dicyclopentadiene(DCPD)were prepared using Ph_(2)C(Cp)(Flu)ZrCl_(2)(Cat.1),rac-Et(Ind)_(2)ZrCl_(2)(Cat.2),Me_(2)C(Cp)(Flu)ZrCl_(2)(Cat.3)andMe_(2)Si(Ind)_(2)ZrCl_(2)(Cat.4)combined with[Ph_(3)C][B(C_(6)F_(5))_(4)]/iBu_(3)Al.Ni(acac)_(2)/iBu_(3)Al was then used to catalyze the hydrogenation of the intracyclic double bonds of ethylene/DCPD copolymers.The results showed that compared to C_(2) symmetric catalysts(Cat.2 and Cat.4),Cs symmetric catalysts(Cat.1 and Cat.3)facilitated the incorporation of copolymers with higher DCPD.1H-and ^(13)C-NMR spectra indicated that ethylene/DCPD copolymerization occurred via enhancement of the norbornene ring.Additionally,measurement of the reactivity ratios provided further confirmation that the copolymers had random sequence distributions.All these samples demonstrated transmittance values above 90%in the visible wavelength range from 400 nm to 800 nm.By changing the fraction of monomers,the glass transition temperature,refractive index,Young's modulus,and tensile strength of the copolymer increased as the incorporation of DCPD increased,whereas the Abbe number and elongation at break decreased.Compared with ethylene/norbornene and ethylene/tetracyclicdodecene copolymers,ethylene/DCPD copolymers,with excellent optical and mechanical properties,are promising materials.
基金support from the National Natural Science Foundation of China(Grant Nos.52078427 and 51608461)is greatly acknowledged.
文摘Geosynthetic-encased stone column(GESC)technology for strengthening soft clay offers significant advantages in terms of cost-effectiveness,environmental sustainability,and engineering applicability.It is widely applied in treating soft foundations for railways,bridges,and embankments.This study evaluates the cyclic response of the geosynthetic-encased steel slag column(GESSC)composite foundation employing three-dimensional nonlinear finite element analysis.A numerical study is conducted to assess the cyclic response of floating GESSC considering the influence of key design variables,including cyclic load amplitude,loading frequency,geosynthetic encasement stiffness,and length-to-diameter ratio.Results show that both cyclic load amplitude and frequency affect the cumulative settlement and excess pore pressure within the GESSC foundation.Within specified limits,increasing the encasement stiffness and column length can significantly improve the GESSC load-bearing characteristics.The parametric study suggests an optimal geosynthetic encasement stiffness for the field prototype columns within the range of 4480–5760 kN/m and a critical steel slag column length of 10 times the column diameter.
基金the financial support provided by the Ministry of Education(MoE),Government of IndiaThe second author acknowledges Coal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021).
文摘The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated sand has not been well established in the literature considering cyclic loading under undrained conditions.Furthermore,the efficacy of different bacterial strains in enhancing the cyclic properties of MICP-treated sand has not been sufficiently documented.Moreover,the effect of wetting-drying(WD)cycles on the cyclic characteristics of MICP-treated sand is not readily available,which may contribute to the limited adoption of MICP treatment in field applications.In this study,strain-controlled consolidated undrained(CU)cyclic triaxial testing was conducted to evaluate the effects of MICP treatment on standard Ennore sand from India with two bacterial strains:Sporosarcina pasteurii and Bacillus subtilis.The treatment durations of 7 d and 14 d were considered,with an interval of 12 h between treatments.The cyclic characteristics,such as the shear modulus and damping ratio,of the MICP-treated sand with the different bacterial strains have been estimated and compared.Furthermore,the effect of WD cycles on the cyclic characteristics of MICP-treated sand has been evaluated considering 5–15 cycles and aging of samples up to three months.The findings of this study may be helpful in assessing the cyclic characteristics of MICP-treated sand,considering the influence of different bacterial strains,treatment duration,and WD cycles.
基金Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB,Grant/Award Number:SKLGDUEK2023National Natural Science Foundation of China,Grant/Award Number:52204101Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2022QE137。
文摘Three sandstone specimens common in rock engineering were selected to study the differences in the mechanical properties of rocks with different lithologies.The development and expansion of the internal cracks in the specimens were observed by combining the simulation system with the acoustic emission system.Through the combination of dynamic and static stresses,the deformation and damage of rocks under deep rock excavation and blasting were simulated.As the results show,the acoustic emission events of specimens with different lithologies under combined static and dynamic cyclic loading can be roughly divided into three phases:weakening,stabilizing,and surging periods.In addition,the acoustic emission characteristics of specimens with different lithologies show general consistency in different compression phases.The degree of fragmentation of specimens increases with the applied stress level;therefore,the stress level is one of the important factors influencing the damage pattern of specimens.The acoustic emission system was used to simulate the deformation and damage of rocks subjected to deep rock body excavation and engineering blasting.Cyclic dynamic perturbations under sinusoidal waves with a frequency of 5 Hz,a loading rate of 0.1 mm/min,a cyclic amplitude of 5 MPa,and a loading rate of 0.1 mm/min were applied to the three rock samples during the experiments.Among them,the fine-grained sandstones are the most sensitive to the sinusoidal cyclic perturbation,followed by the muddy siltstone and the medium-grained sandstones.On this basis,the acoustic emission energy release characteristics were analyzed,and the waveform characteristics in the damage evolution of the specimen under dynamic perturbation were studied by extracting the key points and searching for the main frequency eigenvalues.
基金Project(52174069) supported by the National Natural Science Foundation of ChinaProject(8202033) supported by the Beijing Natural Science Foundation,ChinaProject(KCF2203) supported by the Henan Key Laboratory for Green and Efficient Mining&Comprehensive Utilization of Mineral Resources (Henan Polytechnic University),China。
文摘This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies.
基金supported by the National Natural Science Foundation of China(Nos.52374078,U24A20616 and 52074043)the Sichuan-Chongqing Science and Technology Innovation Cooperation Program Project(No.2024TIAD-CYKJCXX0011)the Fundamental Research Funds for the Central Universities(No.2023CDJKYJH021)。
文摘Salt cavern energy storage technology contributes to energy reserves and renewable energy scale-up.This study focuses on salt cavern gas storage in Jintan to assess the long-term stability of its surrounding rock under frequent operation.The fatigue test results indicate that stress holding significantly reduces fatigue life,with the magnitude of stress level outweighing the duration of holding time in determining peak strain.Employing a machine learning approach,the impact of various factors on fatigue life and peak strain was quantified,revealing that higher stress limits and stress holding adversely impact the fatigue index,whereas lower stress limits and rate exhibit a positive effect.A novel fatigue-creep composite damage constitutive model is constructed,which is able to consider stress magnitude,rate,and stress holding.The model,validated through multi-path tests,accurately captures the elasto-viscous behavior of salt rock during loading,unloading,and stress holding.Sensitivity analysis further reveals the time-and stress-dependent behavior of model parameters,clarifying that strain changes stem not only from stress variations but are also influenced by alterations in elasto-viscous parameters.This study provides a new method for the mechanical assessment of salt cavern gas storage surrounding rocks.
基金supported by the National Natural Science Foundation of China(Grant No.52374078)the Fundamental Research Funds for the Central Universities(Grant No.2023CDJKYJH021)the Sichuan-Chongqing Science and Technology Innovation Cooperation Program Project(Grant No.2024TIAD-CYKJCXX0011).
文摘Cyclic changes in the internal pressure of compressed air energy storage reservoirs in abandoned coal mines result in complex alternating loads on the rocks surrounding the energy storage reservoirs.These complex alternating loads can be regarded as multi-stage constant-amplitude cyclic loads following simplification.In this paper,the mechanical responses and acoustic emission(AE)characteristics of red sandstone with five bedding dip angles(0°,30°,45°,60°,and 90°)under such loads are investigated,and the damage evolution processes of the five specimens are revealed from both quantitative and microscopic perspectives.The results show that the fatigue deformation characteristics of the specimens are affected by the bedding dip angle.Under cyclic loads,the axially irreversible plastic deformations of the rocks increase,their elastic stiffness increases,their crack volumetric strain increases and then decreases,and their AE cumulative count/energy curves exhibit a ladder shape.A damage evolution model based on the crack volumetric strain is proposed,and the damage evolution process is divided into two stages:a rapid increase stage and a tendency toward stabilization stage.Through cluster analysis,the AE events are used to classify the damage into three categories:small-sized localized damage,large-sized tensile damage,and large-sized shear damage.Finally,the MohreCoulomb criterion is applied to analyze the relationship between the failure modes of the red sandstone specimens and the dip angle of the bedding.The results of this study will help to predict the stability and safety of compressed air energy storage reservoirs in abandoned coal mines.
基金supported by Fundamental Research Funds for the Central Universities(Grant No.B200202050)Open Funds of Key Laboratory of Navigation Structure。
文摘The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,experience one-way cyclic tensile loads at inclinations ranging from 0°(horizontal)to 90°(vertical).However,the combined effects of cyclic loading and load inclination remain inadequately understood.This study presents findings from centrifuge tests conducted on rough rigid piles installed in dense sand samples.The results demonstrate that load inclinations significantly influence both cyclic response and ultimate capacity of the piles.Based on the observed cyclic response characteristics,the vertical cyclic load amplitude should not exceed 25%of the ultimate bearing capacity to maintain pile stability.A power expression(with exponent m values ranging from 0.055 to 0.065)is proposed for predicting cumulative pile displacement under unidirectional cyclic loading at inclinations from 0°to 60°.The cyclic response exhibits reduced sensitivity to horizontal cyclic load magnitude,with m-value increasing from 0.06 to 0.14 as load magnitude increases from 0.3 to 0.9.For piles maintaining stability under oblique cyclic loading,the average normalized secant stiffness exceeds 1 and increases with decreasing inclination,indicating enhanced pile stiffness under cyclic loading.For load inclinations below 30°,pile stiffness can be determined using logarithmic function.