This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw ...This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.展开更多
To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,...To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau.展开更多
Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were determined in nineteen surface sediment samples collected from Baiyangdian Lake and its inflow...Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were determined in nineteen surface sediment samples collected from Baiyangdian Lake and its inflowing river (Fuhe River) in North China. Total concentrations of OCPs, PCBs and PAHs in sediments ranged from 5.4 to 707.6 ng]g, 2.3 to 197.8 ng/g, and 101.3 to 6360.5 ng]g, respectively. The levels of contaminants in Fuhe River were significantly higher than those in Baiyandian Lake. For hexachlorocyclohexane (HCHs) and dichlorodiphenytrich/oroethanes (DDTs), α-HCH and p,p'-DDT were predominant isomers; while for PCBs, PCB 28/31, PCB 40/103, PCB 60, PCB 101, and PCB 118 were predominant congeners. Possible sources derived from historical usage for OCPs and incomplete combustion fuel, wood, and coal and exhaustion of boats or cars for PAHs. Risk assessment of sediment indicated that sediments in Fuhe River were likely to pose potential biological adverse impact.展开更多
In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope...In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.展开更多
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical...In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.展开更多
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli...Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.展开更多
Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learnin...Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learning models and long-term observational records of sunspot relative numbers are essential for solar cycle forecasting.Using the multivariate time series of monthly sunspot relative numbers provided by the National Astronomical Observatory of Japan and two Informer-based models,we forecast the amplitude and timing of solar cycles 25 and 26.The main results are as follows:(1)The maximum amplitude of solar cycle 25 is higher than the previous solar cycle 24 and the following solar cycle 26,suggesting that the long-term oscillatory variation of sunspot magnetic fields is related to the roughly centennial Gleissberg cyclicity.(2)Solar cycles 25 and 26 exhibit a pronounced Gnevyshev gap,which might be caused by two non-coincident peaks resulting from solar magnetic flux transported by meridional circulation and mid-latitude diffusion in the convection zone.(3)Hemispheric prediction of sunspot activity reveals a significant northsouth asynchrony,with activity level of the Sun being more intense in the southern hemisphere.These results are consistent with expectations derived from precursor methods and dynamo theories,and further provide evidence for internal changes in solar magnetic field during the decay of the Modern Maximum.展开更多
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analy...The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analysis scheme is proposed in this paper to investigate the soil deformation behavior under the coupling of stress and drying-wetting cycles.A new device is developed based on CT(computerized tomography)workstation to apply certain normal and shear stresses on a soil specimen during drying-wetting cycles.A series of tests are conducted on a type of loess with various coupling of stress paths and drying-wetting cycles.At macroscopic level,stress sensor and laser sensor are used to acquire stress and strain,respectively.The shear and volumetric strain increase during the first few drying-wetting cycles and then become stable.The increase of the shear stress level or confining pressure would cause higher increase rate and the value of shear strain in the process of drying-wetting cycles.At microscopic level,the grayscale value(GSV)of CT scanning image is characterized as the proportion of soil particles to voids.A fabric state parameter is proposed to characterize soil microstructures under the influence of stress and drying-wetting cycle.Test results indicate that the macroand micro-responses show high consistence and relevance.The stress and drying-wetting cycles would both induce collapse of the soil microstructure,which dominants degradation of the soil mechanical properties.The evolution of the macro-mechanical property of soil exhibits a positive linear relationship with the micro-evolution of the fabric state parameter.展开更多
Sulfate attack-induced expansion of cement-treated aggregates in seasonally frozen regions is a well-known issue which causes continuous expansion in railway subgrades,and particularly in high-speed railways.According...Sulfate attack-induced expansion of cement-treated aggregates in seasonally frozen regions is a well-known issue which causes continuous expansion in railway subgrades,and particularly in high-speed railways.Accordingly,we investigated the influence of material proportions,the number of freeze-thaw(FT)cycles,and temperature gradients on the expansion mechanism of sulfate attack on cement-treated aggregates subjected to FT cycles.The conditions,laws,and dominant factors causing the expansion of aggregates were analyzed through swelling tests.The results indicate that under FT cycles,3%content cement-treated graded macadam only experiences slight deformation.The maximum strain of graded macadam attacked by 1%sodium sulfate content in each FT cycle is significantly larger than that of 3%content cement-treated graded macadam attacked by 1%sodium sulfate content.Using scanning electron microscopy,needle-like crystals were observed during sulfate attack of cement-treated graded macadam.Through quantitative analysis,we determined the recoverable and unrecoverable deformations of graded macadam under FT cycles.For graded macadam under sulfate attack,the expansion is mainly induced by periodic frost heave and salt expansion,as well as salt migration.For cement-treated graded macadam under sulfate attack,the expansion is mainly induced by chemical attack and salt migration.This study can serve as a reference for future research on the mechanics of sulfate attack on cement-treated aggregates that experience FT cycles,and provide theoretical support for methods that remediate the expansion induced by sulfate attack.展开更多
In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a to...In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a total of 19,126 solar flares were observed regardless the class: 3548 flares in solar cycle 23 (SC23) and 15,668 flares in solar cycle 24 (SC24). Our findings show that the cycle 23 has observed the highest occurrences of M-class and X-class flares, whereas cycle 24 has pointed out a predominance of B-class and C-class flares throughout its different phases. The results indicate that the cycle 23 was magnetically more intense than cycle 24, leading to more powerful solar flares and more frequent geomagnetic storms, capable of generating significant electromagnetic emissions that can affect satellites and GPS signals. The decrease in intense solar flares during cycle 24 compared to cycle 23 reflects an evolution in solar activity patterns over time.展开更多
Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al...Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.展开更多
As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation ...As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries.展开更多
This study describes the use of the weighted multiplicative algebraic reconstruction technique(WMART)to obtain vertical ozone profiles from limb observations performed by the scanning imaging absorption spectrometer f...This study describes the use of the weighted multiplicative algebraic reconstruction technique(WMART)to obtain vertical ozone profiles from limb observations performed by the scanning imaging absorption spectrometer for atmospheric chartography(SCIAMACHY).This technique is based on SaskMART(the combination of the multiplicative algebraic reconstruction technique and SaskTRAN radiative transfer model),which was originally developed for optical spectrometer and infrared imaging system(OSIRIS)data.One of the objectives of this study was to obtain consistent ozone profiles from the two satellites.In this study,the WMART algorithm is combined with a radiative transfer model(SCIATRAN),as well as a set of measurement vectors comprising five Hartley pairing vectors(HPVs)and one Chappuis triplet vector(CTV),to retrieve ozone profiles in the altitude range of 10–69 km.Considering that the weighting factors in WMART have a significant effect on the retrievals,we propose a novel approach to calculate the pair/triplet weighting factors using wavelength weighting functions.The results of the application of the proposed ozone retrieval scheme are compared with the SCIAMACHY v3.5 ozone product by University of Bremen and validated against profiles derived from other passive satellite observations or measured by ozonesondes.Between 18 and 55 km,the retrieved ozone profiles typically agree with data from the SCIAMACHY ozone product within 5%for tropics and middle latitudes,whereas a negative deviation exists between 35 and 50 km for northern high latitudes,with a deviation of less than 10%above 50 km.Comparison of the retrieved profiles with microwave limb sounder(MLS)v5.0 indicates that the difference is within±5%between 18 and 55 km,and an agreement within 10%is achieved in other altitudes for tropics and middle latitudes.Comparison of the retrieved profiles with OSIRIS v7.1 indicates that the average deviation is within±5%between 20 and 59 km,and difference of approximately 10%is achieved below 20 km.Compared with ozonesondes data,a general validity of the retrievals is no more than 5%between 15 and 30 km.展开更多
An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The cal...An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The calculation method for the meshing efficiency of planetary transmission is analyzed and the equation of the meshing efficiency is deduced.Relationships between the meshing efficiency,the radius of the pin wheel and the eccentric distance are revealed.The design constraint quations and the strength constraint quations are deduced.On the basis of this,a design procedure is laid out.Some examples using different input parameters are conducted to demonstrate the feasibility of the approach.A dynamic simulation of the rigid flexible coupling of cycloid gears is also presented.The results show that the proposed design method is more flexible to control the tooth profiles by changing the input values of the transmission efficiency.展开更多
Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered ext...Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.展开更多
Temperature profiles and cycle times in a large-scale medical waste incinerator installed in a referral hospital were used to assess the performance and functionality of incinerator. The study was conducted using data...Temperature profiles and cycle times in a large-scale medical waste incinerator installed in a referral hospital were used to assess the performance and functionality of incinerator. The study was conducted using data collected from 8 cycles per days for 67 days. For proper combustion and destruction of toxic components in the primary chamber and destruction of pollutants and toxic components in the flue gas, it is desired to reach the maximum temperature in the chambers faster and maintain this maximum temperature for an extended time interval. The primary and secondary temperatures T1 and T2, respectively, were recorded at an interval of one minute for different cycles. Different amounts of wastes with varying proportions of sharps and other wastes were loaded into the incinerator and temperature profiles recorded. The analysis shows that the incinerator works at primary temperature less than the required recommended by manufacturer while the secondary chamber operates between 600 and above 950℃, although higher temperatures up to 1020℃ were observed. The average load preparation time was observed to be 14.6 minutes, while the chamber preheating time before daily initial loading was 25.45 minutes. Both temperature profiles were observed to have similar shapes for all combustion cycles studied, except when incinerator malfunctioning occurred. The average cycle time was established to be 32.7 minutes and 28.97 minutes based on time to drop to 550℃ after the maximum temperature and loading time intervals, respectively, although longer cycle times were observed. Temperature drop in both combustion chambers as a result of waste charging was observed in the interval of 5 minutes. The chamber heating rate was observed to decrease exponentially with time during both preheating and incineration operation.展开更多
This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data a...This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data and historical academic performance)with dynamic behavioral patterns(e.g.,real-time interactions and evolving interests over time).The research employs Term Frequency-Inverse Document Frequency(TF-IDF)for semantic feature extraction,integrates the Analytic Hierarchy Process(AHP)for feature weighting,and introduces a time decay function inspired by Newton’s law of cooling to dynamically model changes in learners’interests.Empirical results demonstrate that this framework effectively captures the dynamic evolution of learners’behaviors and provides context-aware learning resource recommendations.The study introduces a novel paradigm for learner modeling in educational technology,combining methodological innovation with a scalable technical architecture,thereby laying a foundation for the development of adaptive learning systems.展开更多
There is a widespread policy assumption that anthropogenic greenhouse gases are the main driver of the observed 1°C rise in global surface air temperatures since‘pre-industrial’times.This paper demonstrates tha...There is a widespread policy assumption that anthropogenic greenhouse gases are the main driver of the observed 1°C rise in global surface air temperatures since‘pre-industrial’times.This paper demonstrates that the onset of the current warming trend began in the mid-19th century and is consistent with the rising phase of variable global warming and cooling cycles in both the Northern and Southern Hemispheres.Hemispheres.The last trough of the millennial cycle,the Little Ice Age,coincides approximately with the baseline of pre-industrial times used to calculate the impact of Anthropogenic Global Warming.Yet,half of the observed 20th century temperature rise occurred before 1950 when carbon dioxide levels remained low,with the remaining half happening at a similar rate of warming despite the much higher concentrations of greenhouse gases in the atmosphere.This study shows that when the amplitudes and rates of change of the long-term global cycles are considered,the anthropogenic component of warming can be reduced to 38%(using factors derived from the latest IPCC Working Group reports)to as little as 25%(using observational flux data of dominant Short Wave Absorbed Surface Radiation).These global climate cycles can be extrapolated into the future and the implications for policy of a large natural component to climate change are explored—in particular,the potential for mitigation strategies to have minimal impact and for the climate to cool consequent upon a cyclic down-phase.展开更多
Repeated wet swelling and dry shrinkage of soil leads to the gradual occurrence of cracks and the formation of a complex fracture network.In order to study the development characteristics and quantitative analysis of ...Repeated wet swelling and dry shrinkage of soil leads to the gradual occurrence of cracks and the formation of a complex fracture network.In order to study the development characteristics and quantitative analysis of cracks in root-soil complex in different growth periods under dry-wet cycles,the alfalfa root-loess complex was in-vestigated during different growth periods under different dry-wet cycles,and a dry-wet cycle experiment was conducted.The crack rate,relative area,average width,total length,and the cracks fractal dimension in the root-soil complex were extracted;the crack development characteristics of plain soil were analyzed under the PG-DwC(dry-wet cycle caused by plant water management during plant growth period),as well as the crack development characteristics of root-soil complex under PG-DWC and EC-DWC(the dry-wet cycles caused by extreme natural conditions such as continuous rain);the effects of plant roots and dry-wet cycles on soil cracks were discussed.The results showed that the average crack width,crack rate,relative crack area,and total crack length of the alfalfa root-loess complex were higher than those of the plain soil during PG-DWC.The result indicated that compared with plain soil during PG-DWC,the presence of plant roots in alfalfa root-soil complex in the same growth period promoted the cracks development to some extent.The alfalfa root-soil complex crack parameters during different growth periods were relatively stable during PG-DWC(O dry-wet cycle).During EC-DWC(1,3,and 5 dry-wet cycles),the alfalfa root-loess complex crack parameters increased with the number of dry-wet cycles during different growth periods.Unlike PG-DWC,the EC-DWC accelerated crack development,and the degree of crack development increased with the number of dry-wet cycles.The existence of plant roots promoted crack development and expansion in the root-soil complex to a certain extent,and the dry-wet cycle certainly promoted crack development and expansion in the root-soil complex.This result contradicts the im-provement in the root-soil complex's macro-mechanical properties during plant growth,due to differences in the mechanical properties of roots and soil.The research results will provide reference for the root soil complex crack development law and the design of slope protection by vegetation.展开更多
基金Funded by the Science and Technology Program of Gansu Province(Nos.25JRRA497,23ZDFA017)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0950000)High-level Talent Funding of Kashi。
文摘This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.
基金support from the National Natural Science Foundation of China(Grant Nos.42107193,42077245)supported by the Sichuan Science and Technology Program(2025YFNH0008,2025YFNH0004)+1 种基金the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(SKLGP2023Z006)the Everest Scientific Research Program 2.0:Research on mechanism and control of glacial lake outburst chain catastrophe in Qinghai-Xizang Plateau based on man-earth coordination perspective.
文摘To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau.
基金supported by the National Basic Research Program (973) of China (No.2006CB403306)the National Natural Science Foundation of China (No.30870311)
文摘Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were determined in nineteen surface sediment samples collected from Baiyangdian Lake and its inflowing river (Fuhe River) in North China. Total concentrations of OCPs, PCBs and PAHs in sediments ranged from 5.4 to 707.6 ng]g, 2.3 to 197.8 ng/g, and 101.3 to 6360.5 ng]g, respectively. The levels of contaminants in Fuhe River were significantly higher than those in Baiyandian Lake. For hexachlorocyclohexane (HCHs) and dichlorodiphenytrich/oroethanes (DDTs), α-HCH and p,p'-DDT were predominant isomers; while for PCBs, PCB 28/31, PCB 40/103, PCB 60, PCB 101, and PCB 118 were predominant congeners. Possible sources derived from historical usage for OCPs and incomplete combustion fuel, wood, and coal and exhaustion of boats or cars for PAHs. Risk assessment of sediment indicated that sediments in Fuhe River were likely to pose potential biological adverse impact.
基金supported by the National Natural Science Foundation of China(Nos.42171108 and 42101136)Sichuan Science and Technology Program(Nos.2024NSFSC2007 and2025YFHZ0273)Natural Science Starting Project of SWPU(No.2024QHZ029)。
文摘In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.
基金funding support from the National Natural Science Foundation of China(Grant No.12172019).
文摘In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.
基金the W.M.Keck Center for Nano-Scale Imaging in the Department of Chemistry and Biochemistry at the University of Arizona(Grant No.RRID:SCR_022884),with funding from the W.M.Keck Foundation Grant.
文摘Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.
基金supported by the National Nature Science Foundation of China(12463009)the Yunnan Fundamental Research Projects(202301AV070007,202401AU070026)+2 种基金the"Yunnan Revitalization Talent Support Program"Innovation Team Project(202405AS350012)the Scientific Research Foundation Project of Yunnan Education Department(2023J0624,2024Y469)the GHfund A(202407016295)。
文摘Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learning models and long-term observational records of sunspot relative numbers are essential for solar cycle forecasting.Using the multivariate time series of monthly sunspot relative numbers provided by the National Astronomical Observatory of Japan and two Informer-based models,we forecast the amplitude and timing of solar cycles 25 and 26.The main results are as follows:(1)The maximum amplitude of solar cycle 25 is higher than the previous solar cycle 24 and the following solar cycle 26,suggesting that the long-term oscillatory variation of sunspot magnetic fields is related to the roughly centennial Gleissberg cyclicity.(2)Solar cycles 25 and 26 exhibit a pronounced Gnevyshev gap,which might be caused by two non-coincident peaks resulting from solar magnetic flux transported by meridional circulation and mid-latitude diffusion in the convection zone.(3)Hemispheric prediction of sunspot activity reveals a significant northsouth asynchrony,with activity level of the Sun being more intense in the southern hemisphere.These results are consistent with expectations derived from precursor methods and dynamo theories,and further provide evidence for internal changes in solar magnetic field during the decay of the Modern Maximum.
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.
基金funded by National Key R&D Program of China(Grant No.2023YFC3007001)Beijing Natural Science Foundation(Grant No.8244053)China Postdoctoral Science Foundation(Grant No.2024M754065).
文摘The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analysis scheme is proposed in this paper to investigate the soil deformation behavior under the coupling of stress and drying-wetting cycles.A new device is developed based on CT(computerized tomography)workstation to apply certain normal and shear stresses on a soil specimen during drying-wetting cycles.A series of tests are conducted on a type of loess with various coupling of stress paths and drying-wetting cycles.At macroscopic level,stress sensor and laser sensor are used to acquire stress and strain,respectively.The shear and volumetric strain increase during the first few drying-wetting cycles and then become stable.The increase of the shear stress level or confining pressure would cause higher increase rate and the value of shear strain in the process of drying-wetting cycles.At microscopic level,the grayscale value(GSV)of CT scanning image is characterized as the proportion of soil particles to voids.A fabric state parameter is proposed to characterize soil microstructures under the influence of stress and drying-wetting cycle.Test results indicate that the macroand micro-responses show high consistence and relevance.The stress and drying-wetting cycles would both induce collapse of the soil microstructure,which dominants degradation of the soil mechanical properties.The evolution of the macro-mechanical property of soil exhibits a positive linear relationship with the micro-evolution of the fabric state parameter.
基金National Natural Science Foundation of China(Nos.42171130 and 42301158)Pilot Project of China’s Strength in Transportation for the Central Research Institute(No.QG2021-1-4-7)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2021YFB2601200).
文摘Sulfate attack-induced expansion of cement-treated aggregates in seasonally frozen regions is a well-known issue which causes continuous expansion in railway subgrades,and particularly in high-speed railways.Accordingly,we investigated the influence of material proportions,the number of freeze-thaw(FT)cycles,and temperature gradients on the expansion mechanism of sulfate attack on cement-treated aggregates subjected to FT cycles.The conditions,laws,and dominant factors causing the expansion of aggregates were analyzed through swelling tests.The results indicate that under FT cycles,3%content cement-treated graded macadam only experiences slight deformation.The maximum strain of graded macadam attacked by 1%sodium sulfate content in each FT cycle is significantly larger than that of 3%content cement-treated graded macadam attacked by 1%sodium sulfate content.Using scanning electron microscopy,needle-like crystals were observed during sulfate attack of cement-treated graded macadam.Through quantitative analysis,we determined the recoverable and unrecoverable deformations of graded macadam under FT cycles.For graded macadam under sulfate attack,the expansion is mainly induced by periodic frost heave and salt expansion,as well as salt migration.For cement-treated graded macadam under sulfate attack,the expansion is mainly induced by chemical attack and salt migration.This study can serve as a reference for future research on the mechanics of sulfate attack on cement-treated aggregates that experience FT cycles,and provide theoretical support for methods that remediate the expansion induced by sulfate attack.
文摘In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a total of 19,126 solar flares were observed regardless the class: 3548 flares in solar cycle 23 (SC23) and 15,668 flares in solar cycle 24 (SC24). Our findings show that the cycle 23 has observed the highest occurrences of M-class and X-class flares, whereas cycle 24 has pointed out a predominance of B-class and C-class flares throughout its different phases. The results indicate that the cycle 23 was magnetically more intense than cycle 24, leading to more powerful solar flares and more frequent geomagnetic storms, capable of generating significant electromagnetic emissions that can affect satellites and GPS signals. The decrease in intense solar flares during cycle 24 compared to cycle 23 reflects an evolution in solar activity patterns over time.
基金supported by the National Natural Science Foundation of China (42388101)the CAS Youth Interdisciplinary Team (JCTD-2021-05)funded by the Youth Innovation Promotion Association, Chinese Academy of Sciences.
文摘Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.
基金supported by the Fundamental Research Funds for the Central Universities(WK2090000055)Anhui Provincial Natural Science Foundation of China(2308085QG231).
文摘As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries.
基金supported by the National Science Foundations of China(No.61905256)the National Key Research and Development Program of China(No.2019YFC0214702)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2020439)。
文摘This study describes the use of the weighted multiplicative algebraic reconstruction technique(WMART)to obtain vertical ozone profiles from limb observations performed by the scanning imaging absorption spectrometer for atmospheric chartography(SCIAMACHY).This technique is based on SaskMART(the combination of the multiplicative algebraic reconstruction technique and SaskTRAN radiative transfer model),which was originally developed for optical spectrometer and infrared imaging system(OSIRIS)data.One of the objectives of this study was to obtain consistent ozone profiles from the two satellites.In this study,the WMART algorithm is combined with a radiative transfer model(SCIATRAN),as well as a set of measurement vectors comprising five Hartley pairing vectors(HPVs)and one Chappuis triplet vector(CTV),to retrieve ozone profiles in the altitude range of 10–69 km.Considering that the weighting factors in WMART have a significant effect on the retrievals,we propose a novel approach to calculate the pair/triplet weighting factors using wavelength weighting functions.The results of the application of the proposed ozone retrieval scheme are compared with the SCIAMACHY v3.5 ozone product by University of Bremen and validated against profiles derived from other passive satellite observations or measured by ozonesondes.Between 18 and 55 km,the retrieved ozone profiles typically agree with data from the SCIAMACHY ozone product within 5%for tropics and middle latitudes,whereas a negative deviation exists between 35 and 50 km for northern high latitudes,with a deviation of less than 10%above 50 km.Comparison of the retrieved profiles with microwave limb sounder(MLS)v5.0 indicates that the difference is within±5%between 18 and 55 km,and an agreement within 10%is achieved in other altitudes for tropics and middle latitudes.Comparison of the retrieved profiles with OSIRIS v7.1 indicates that the average deviation is within±5%between 20 and 59 km,and difference of approximately 10%is achieved below 20 km.Compared with ozonesondes data,a general validity of the retrievals is no more than 5%between 15 and 30 km.
基金supported by the National Natural Science Foundation of China (Nos.51205335, 51375411)the Scientific Research for the High Level Talent of Nanjing Institute of Technology (No.YKJ201702)
文摘An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The calculation method for the meshing efficiency of planetary transmission is analyzed and the equation of the meshing efficiency is deduced.Relationships between the meshing efficiency,the radius of the pin wheel and the eccentric distance are revealed.The design constraint quations and the strength constraint quations are deduced.On the basis of this,a design procedure is laid out.Some examples using different input parameters are conducted to demonstrate the feasibility of the approach.A dynamic simulation of the rigid flexible coupling of cycloid gears is also presented.The results show that the proposed design method is more flexible to control the tooth profiles by changing the input values of the transmission efficiency.
基金Project(JQ2022E004)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.
文摘Temperature profiles and cycle times in a large-scale medical waste incinerator installed in a referral hospital were used to assess the performance and functionality of incinerator. The study was conducted using data collected from 8 cycles per days for 67 days. For proper combustion and destruction of toxic components in the primary chamber and destruction of pollutants and toxic components in the flue gas, it is desired to reach the maximum temperature in the chambers faster and maintain this maximum temperature for an extended time interval. The primary and secondary temperatures T1 and T2, respectively, were recorded at an interval of one minute for different cycles. Different amounts of wastes with varying proportions of sharps and other wastes were loaded into the incinerator and temperature profiles recorded. The analysis shows that the incinerator works at primary temperature less than the required recommended by manufacturer while the secondary chamber operates between 600 and above 950℃, although higher temperatures up to 1020℃ were observed. The average load preparation time was observed to be 14.6 minutes, while the chamber preheating time before daily initial loading was 25.45 minutes. Both temperature profiles were observed to have similar shapes for all combustion cycles studied, except when incinerator malfunctioning occurred. The average cycle time was established to be 32.7 minutes and 28.97 minutes based on time to drop to 550℃ after the maximum temperature and loading time intervals, respectively, although longer cycle times were observed. Temperature drop in both combustion chambers as a result of waste charging was observed in the interval of 5 minutes. The chamber heating rate was observed to decrease exponentially with time during both preheating and incineration operation.
基金This work is supported by the Ministry of Education of Humanities and Social Science projects in China(No.20YJCZH124)Guangdong Province Education and Teaching Reform Project No.640:Research on the Teaching Practice and Application of Online Peer Assessment Methods in the Context of Artificial Intelligence.
文摘This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data and historical academic performance)with dynamic behavioral patterns(e.g.,real-time interactions and evolving interests over time).The research employs Term Frequency-Inverse Document Frequency(TF-IDF)for semantic feature extraction,integrates the Analytic Hierarchy Process(AHP)for feature weighting,and introduces a time decay function inspired by Newton’s law of cooling to dynamically model changes in learners’interests.Empirical results demonstrate that this framework effectively captures the dynamic evolution of learners’behaviors and provides context-aware learning resource recommendations.The study introduces a novel paradigm for learner modeling in educational technology,combining methodological innovation with a scalable technical architecture,thereby laying a foundation for the development of adaptive learning systems.
文摘There is a widespread policy assumption that anthropogenic greenhouse gases are the main driver of the observed 1°C rise in global surface air temperatures since‘pre-industrial’times.This paper demonstrates that the onset of the current warming trend began in the mid-19th century and is consistent with the rising phase of variable global warming and cooling cycles in both the Northern and Southern Hemispheres.Hemispheres.The last trough of the millennial cycle,the Little Ice Age,coincides approximately with the baseline of pre-industrial times used to calculate the impact of Anthropogenic Global Warming.Yet,half of the observed 20th century temperature rise occurred before 1950 when carbon dioxide levels remained low,with the remaining half happening at a similar rate of warming despite the much higher concentrations of greenhouse gases in the atmosphere.This study shows that when the amplitudes and rates of change of the long-term global cycles are considered,the anthropogenic component of warming can be reduced to 38%(using factors derived from the latest IPCC Working Group reports)to as little as 25%(using observational flux data of dominant Short Wave Absorbed Surface Radiation).These global climate cycles can be extrapolated into the future and the implications for policy of a large natural component to climate change are explored—in particular,the potential for mitigation strategies to have minimal impact and for the climate to cool consequent upon a cyclic down-phase.
基金the Key Research and Development Project of Ningxia Hui Autonomous Region(No.2023BEG02072)for their financial support.
文摘Repeated wet swelling and dry shrinkage of soil leads to the gradual occurrence of cracks and the formation of a complex fracture network.In order to study the development characteristics and quantitative analysis of cracks in root-soil complex in different growth periods under dry-wet cycles,the alfalfa root-loess complex was in-vestigated during different growth periods under different dry-wet cycles,and a dry-wet cycle experiment was conducted.The crack rate,relative area,average width,total length,and the cracks fractal dimension in the root-soil complex were extracted;the crack development characteristics of plain soil were analyzed under the PG-DwC(dry-wet cycle caused by plant water management during plant growth period),as well as the crack development characteristics of root-soil complex under PG-DWC and EC-DWC(the dry-wet cycles caused by extreme natural conditions such as continuous rain);the effects of plant roots and dry-wet cycles on soil cracks were discussed.The results showed that the average crack width,crack rate,relative crack area,and total crack length of the alfalfa root-loess complex were higher than those of the plain soil during PG-DWC.The result indicated that compared with plain soil during PG-DWC,the presence of plant roots in alfalfa root-soil complex in the same growth period promoted the cracks development to some extent.The alfalfa root-soil complex crack parameters during different growth periods were relatively stable during PG-DWC(O dry-wet cycle).During EC-DWC(1,3,and 5 dry-wet cycles),the alfalfa root-loess complex crack parameters increased with the number of dry-wet cycles during different growth periods.Unlike PG-DWC,the EC-DWC accelerated crack development,and the degree of crack development increased with the number of dry-wet cycles.The existence of plant roots promoted crack development and expansion in the root-soil complex to a certain extent,and the dry-wet cycle certainly promoted crack development and expansion in the root-soil complex.This result contradicts the im-provement in the root-soil complex's macro-mechanical properties during plant growth,due to differences in the mechanical properties of roots and soil.The research results will provide reference for the root soil complex crack development law and the design of slope protection by vegetation.