In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope...In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.展开更多
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli...Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.展开更多
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical...In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.展开更多
Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems.However,the distribution of microbial functional genes and th...Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems.However,the distribution of microbial functional genes and their influencing factors in hot springs remain largely unclear.Therefore,this study investigated the microbial functional genes and their potential for controlling biogeochemical cycles(C,N,S,and P) in the hot Springs of Tengchong,China,using the Geochip method,a functional gene microarray technology.The examined hot springs have very different microbial functional genes.A total of 22 736 gene probe signals were identified,belonging to 567 functional genes and associated with 15 ecological functions,mainly involving stress response,carbon cycle,nitrogen cycle,sulfur cycle,phosphorus cycle and energy processes.The amyA,narG,dsrA and ppx genes were most abundant in carbon,nitrogen,sulfur and phosphorus cycles,respectively,and were significantly correlated with pH,temperature and SO_(4)^(2-).The diversity and abundance of detected gene probes were negatively correlated with temperature.The α-diversity(i.e.,Shannon index) was high at low temperature and low pH.Molecular functional interactions revealed by the gene connectivity levels were negatively correlated with temperature,pH and SO_(4)^(2-).These results suggested that the abundance,diversity and interactions of microbial functional genes were significantly influenced by geochemical parameters.-In addition,some genera possessed functional genes related to carbon,nitrogen,sulfur,and phosphorus cycles and can synergistically control the biogeochemical cycles of carbon,nitrogen,sulfur and phosphorus.These findings provide new insights into the functional potentials of microorganisms to participate in biogeochemical cycles and their responses to environmental factors in hot springs.展开更多
Cyclic wetting-drying alternation has a significant influence on the strength and structure of soils.It is prone to causing soil softening and disintegration,highlighting the importance to improve the soil's resis...Cyclic wetting-drying alternation has a significant influence on the strength and structure of soils.It is prone to causing soil softening and disintegration,highlighting the importance to improve the soil's resistance to disintegration.This paper utilizes a self-developed disintegration test apparatus to analyze the disintegration characteristics of improved red soil under wet-dry cycles,focusing on the disintegration amount and ratio.Furthermore,XRD(X-ray diffraction),SEM(scanning electron microscope),tensile test,and contact angle test are employed to investigate the anti-disintegration behaviors of the improved red soil.The results show that the disintegrating amount and ratio of undisturbed and improved red soil are distinctly different under wet-dry cycles.Linear,stepped,constant and concave but perfect"S"shapes of the disintegrating ratio are observed in the cyclic tests.Cement and lime strengthen the red soil primarily through hydration reaction.The drop experiment confirms that cement plays a crucial role in restraining the disintegration.When the ameliorant content is low,the correlation between pore parameters and disintegration duration of red soil follows the order:mean shape coefficient>fractal dimension>probability entropy>area probability distribution index.With a high ameliorant content,the correlation remains similar,with slightly higher correlation for probability entropy.Under wet-dry cycle conditions,sludge and kaolin can improve the soil through the bonding of clay particles.The improved water repellency greatly enhances the resistance to disintegration of the altered red soil.The research provides valuable insights for the practical application of soil.展开更多
In cold-region environments,where complex stresses and mining disturbances occur,rock masses are frequently segmented into discontinuous bodies by fractured structural planes,leading to anisotropic physical and mechan...In cold-region environments,where complex stresses and mining disturbances occur,rock masses are frequently segmented into discontinuous bodies by fractured structural planes,leading to anisotropic physical and mechanical properties.To explore the evolution of microcracks,degradation characteristics,and failure modes of fractured rocks in cold regions under the influence of freeze-thaw cycles,integrating laboratory experiments with the damage mechanics of freeze-thaw cycles.A numerical model for freeze-thaw cycle damage in rocks with various fracture dip angles was developed.The study revealed that the freeze-thaw expansion force generated during the pore water-ice phase transition is the primary driving factor behind freeze-thaw cycle damage.The initiation and propagation of microcracks and micropores,the detachment of matrix particles,and the loosening of clay mineral structures result in the transformation of the rock from a dense to a porous state,causing significant degradation in macroscopic mechanical properties.As freeze-thaw cycles increase,both the uniaxial compressive strength and the deformation modulus of the rock decrease significantly,with the failure mode gradually shifting from brittle instability to brittle-plastic or plastic failure.The findings of this study offer a practical approach to uncovering the mechanical response mechanisms between freeze-thaw damage in fractured rocks and structural planes.展开更多
The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T an...The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T and bedding angles is limited,and most traditional rock damage models cannot accurately capture these characteristics.We performed axial compression tests to ex-plore the strength characteristics of bedding slates at the bedding angles ofβ=0°,30°,45°,60°,and 90°under various F-T cycles.The experimental findings suggest that the elastic modulus and uniaxial compressive strength of the slate declined exponentially as the number of F-T cycles increased.Axial compressive strength was characterized by a U-shaped tendency with the bedding angle.This study proposes a damage model for the uniaxial compressive strength of transversely isotropic rock,which integrates the F-T effect,utilizing the enhanced anisotropic Hoek-Brown strength criterion and a statistical damage model.This model was validated using experimental data.This statistical damage model can precisely capture the dual attributes of rock mass strength reduction with F-T cy-cles and variations arising from the loading direction.展开更多
Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes....Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes.This study focuses on the effects of drying-wetting cycles and soaking conditions on the long-term behavior of sandstone joints.A total of 12 multi-stage shear creep tests are carried out on sandstone joints subjected to varying drying-wetting cycles under both soaking and un-soaking conditions.Based on the experimental results,the influences of drying-wetting cycles as well as soaking conditions on the microstructure,shear creep displacement,strength,and failure morphologies of sandstone joints are investigated comprehensively.Results indicate that increasing drying-wetting cycles not only yields larger shear creep displacements but also leads to a negative exponential decrease in the strength of sandstone joints.Besides,soaking conditions strongly influence the creep behavior of sandstone joints.The failure strength and long-term strength of sandstone joints for soaked samples decrease by 13.6%–29.0%and 19.4%–37.5%,respectively,as compared to unsoaked samples.Furthermore,four distinct stages in the shear creep process were identified according to the results obtained from multi-stage shear creep tests and computerized tomography scans,and three creep failure modes of sandstone joints are thus determined.Finally,the influence mechanism of drying-wetting cycles and soaking conditions on the creep failure modes of sandstone joints is revealed.Drying-wetting cycles and soaking conditions diminish the influence of asperities on the shear creep behavior of joints,thereby reducing the resistance of joints to long-term deformation.展开更多
Dry-wet cycle is a key factor in surface weathering of earthen heritage,which remains insufficiently explained.It involves the interaction of humidity,stress,and damage.Using the RFPA(realistic failure process analysi...Dry-wet cycle is a key factor in surface weathering of earthen heritage,which remains insufficiently explained.It involves the interaction of humidity,stress,and damage.Using the RFPA(realistic failure process analysis)numerical method,this study reproduced the processes of humidity diffusion,deformation,stress,and damage evolution under dry-wet cycles in the soil site of Suoyang City,China.The numerical results indicate that the drying phase following rainfall has the most significant deteriorative impact on the earthen heritage.The evaporation of surface moisture during this phase causes volume shrinkage,which in turn generates tensile stress and leads to the formation of numerous desiccation cracks.Desiccation cracks provide channels for moisture diffusion,which further exacerbates generation of the cracks,leading to a mutual promotion between the two phenomena.Furthermore,during the wetting phase,the model elements undergo hygroscopic expansion,resulting in a slight increase in strain and displacement.Previously formed cracks may exhibit temporary narrowing or closure,but will revert during the subsequent drying phase.Ultimately,the overall displacement increases with the number of dry-wet cycles.The findings provide a theoretical foundation for protection against surface weathering and other damage in earthen heritage in arid regions.展开更多
Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability...Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability and often triggers collapses or landslides.Existing studies focus mostly on singlescale or single-factor analyses but cannot fully capture the coupled mechanisms driving instability under freeze-thaw conditions.This study aimed to establish a theoretical framework to quantitatively characterize the evolution of rock mass stability,thereby providing a sound basis for hazard prediction and prevention.By integrating limit equilibrium theory with rock frost heave and circular hole expansion theory,mechanical models for sliding-and toppling-type dangerous rock masses were established.Three key factors were incorporated:frost heave forces acting on throughgoing structural planes,rock property deterioration in nonpenetrative sections,and progressive freezing depth development.A theoretical relationship between the stability coefficient and the number of freeze-thaw cycles was derived.By considering the Zimei Peaks rock masses in Gansu Province as the case study and conducting parametric analyses,the results revealed that the stability coefficient rapidly decreases during the initial cycles,followed by a slower decrease and eventual stabilization.The coefficient decreased 4.5 times more during the first 15 cycles than during the subsequent 15 cycles.Moreover,stability degradation was strongly influenced by the freezing temperature,initial porosity,and rock debris loss ratio,with critical thresholds determined at a 3.8%porosity and a 0.83 debris loss ratio.The findings indicated that stability deterioration is governed by the coupled effects of frost heave loading,microstructural damage accumulation,and freezing depth development,with clear stagedependent and threshold-driven patterns.This work provides not only a quantitative explanation of instability mechanisms in cold-region rock masses but also practical guidance for engineering stability assessment and disaster mitigation.展开更多
Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive r...Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.展开更多
Infrastructure construction in seasonally frozen regions,covering 23%of total land,faces challenges from freeze-thaw(F-T)induced damages.Expansive soils,as an important problematic soil undergo major hydromechanical p...Infrastructure construction in seasonally frozen regions,covering 23%of total land,faces challenges from freeze-thaw(F-T)induced damages.Expansive soils,as an important problematic soil undergo major hydromechanical properties changes influenced by F-T cycles.Sand-bentonite mixtures are extensively used for constructing earthen hydraulic barriers in cold regions.This study investigates the influence of F-T cycles on multi-directional strains and anisotropic hydraulic conductivity of different sand-bentonite mixtures prepared at optimum water content and experienced three distinct saturation levels.Results indicate that saturation level and bentonite content significantly influence volumetric strain under F-T cycles.The simultaneous effect of ice lens formation,expanding micro-voids,and suction generated by freezing processes cause different volumetric behaviors at varying saturation degrees.The dry specimen exhibits no strain under F-T cycles,while optimum and saturated specimens experienced final volumetric strains of 1.02%and 3.03%,respectively.Notably,during freezing,the specimen at optimumwater content shrank,while the saturated specimen expanded.Increasing bentonite content from 40%to 70%developed freezing-induced shrinkage,from 1.73%to 4.72%,with higher thaw strain attributed to increased specimen plasticity.Also,dimensional variations revealed the cross-anisotropic nature of specimens,highlighting direct influence of water content on the shrinkage ratio.F-T cycles also increased hydraulic conductivity along both orthogonal directions by two orders of magnitude,while the anisotropy ratio decreased by about 3 after 9 F-T cycles,indicating altered pore structures.F-T cycles induce reduced swelling potential and compressibility over subsequent cycles.Microstructural observations also confirmed the F-T effects on the enhancement of porosity.展开更多
This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to c...This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to consider the different initial rock fabrics.The long-term relative humidity(RH)cycles under two amplitudes were imposed on red mudstone to simulate the weathering process.After RH cycles,a series of uniaxial compression tests,Brazilian splitting tests and bender-extender element tests were carried out to examine the reduction in strength and stiffness.The objective of this study is to develop an extended stress-volume framework characterizing the degradation of natural red mudstone both at microscale and macroscale.Accompanied by the irreversible swelling of the rock specimen is the progressive degradation of strength,stiffness and Poisson's ratio.A unified exponential degradation model in terms of the irreversible volumetric strain was thus proposed to capture such a degradation pattern.The effect of the initial rock fabric was evident.The highest degradation rate and potential were identified in slightly weathered specimens.Significant slaking of aggregates and crack propagation were confirmed by scanning electron microscope(SEM)micrographs,which were considered as the main consequence of structure damage leading to degradation of mechanical properties.The structure damage during RH cycles denoted the hysteresis nature in the response to the cycling hydraulic reaction,in turn causing the increase in volumetric strain.Thus,the stress-volume relation rather than the suction relation was found in more reasonable agreement with the experimental results.展开更多
There is a widespread policy assumption that anthropogenic greenhouse gases are the main driver of the observed 1°C rise in global surface air temperatures since‘pre-industrial’times.This paper demonstrates tha...There is a widespread policy assumption that anthropogenic greenhouse gases are the main driver of the observed 1°C rise in global surface air temperatures since‘pre-industrial’times.This paper demonstrates that the onset of the current warming trend began in the mid-19th century and is consistent with the rising phase of variable global warming and cooling cycles in both the Northern and Southern Hemispheres.Hemispheres.The last trough of the millennial cycle,the Little Ice Age,coincides approximately with the baseline of pre-industrial times used to calculate the impact of Anthropogenic Global Warming.Yet,half of the observed 20th century temperature rise occurred before 1950 when carbon dioxide levels remained low,with the remaining half happening at a similar rate of warming despite the much higher concentrations of greenhouse gases in the atmosphere.This study shows that when the amplitudes and rates of change of the long-term global cycles are considered,the anthropogenic component of warming can be reduced to 38%(using factors derived from the latest IPCC Working Group reports)to as little as 25%(using observational flux data of dominant Short Wave Absorbed Surface Radiation).These global climate cycles can be extrapolated into the future and the implications for policy of a large natural component to climate change are explored—in particular,the potential for mitigation strategies to have minimal impact and for the climate to cool consequent upon a cyclic down-phase.展开更多
Aiming at challenges posed by rock freezethaw(FT)in cold regions rock mass engineering,it is of great significance to analyze its macro-and micromechanical properties and damage laws for the smooth progress of constru...Aiming at challenges posed by rock freezethaw(FT)in cold regions rock mass engineering,it is of great significance to analyze its macro-and micromechanical properties and damage laws for the smooth progress of construction.In this study,indoor freezethaw cycle(FTC)tests on sandstone were conducted to analyze the mass change rate,density change rate,longitudinal wave velocity change rate,microstructure change and mechanical properties of sandstone after FTC.A microscopic FT damage variable reflecting the FT damage was defined based on the changes of rock porosity before and after the FTC,enabling the derivation of the total damage variable under the coupled action of FTC and mechanical loading.A damage evolution equation and a microscopic damage constitutive model for rock under coupled FTC and confining pressure were established by using Lemaitre’s strain equivalence principle,the theory of continuous damage mechanics,and the assumption that the failure of rock micro-units follows the SMP criterion.The rationality and accuracy of the model were verified using triaxial compression test data for FT-damaged rock.The results show that both macroand micro-mechanical properties of sandstone are degraded under the action of FTC,resulting in significant damage.The developed microscopic damage constitutive model can reflect the stress-strain characteristics of the whole process of FT rock triaxial compression,with excellent agreement observed between experimental and theoretical curves.This validates the reliability of the model and the methodology for determining its parameters.Additionally,defining the microscopic FT damage variable based on rock porosity changes is demonstrated to be a feasible and highly accurate approach to reflect rock FT damage degree.This model expands the damage model for rock under the coupling effect of FTC and confining pressure,further illuminating the damage mechanism and failure law in such environments.The findings provide references for the construction of rock mass engineering in cold regions.展开更多
The freeze-thaw process is crucial for forming soil macropore structure to promote movement of water and salt downward by preferential flow in seasonally frozen regions.However,the freeze-thaw process of soil is hinde...The freeze-thaw process is crucial for forming soil macropore structure to promote movement of water and salt downward by preferential flow in seasonally frozen regions.However,the freeze-thaw process of soil is hindered by the snowpack,and the effects of the snowpack on the soil macropore structure and its implications on the formation of preferential flow are not well understood.This study collected soil samples from Da’an City,Northeast China,on July 15 and 16,2022,and conducted an indoor soil column snowpack-freeze-thaw tracing experiment on October 10 to 30,2022,to reveal the impact of snowpack and freeze-thaw cycles(FTC)on the forma-tion of preferential flow.The experiments were carried out with three levels of initial moisture content(IMC)of the soil column,the times of freeze-thaw cycles(T-FTC),and the snowpack thickness(SPT).Results show that increases in both IMC and SPT decreased the max infiltration depth(MID)of preferential flow.Greater T-FTC increased the MID and non-uniformity of the wet front trace and promoted the creation of preferential flow.The T-FTC and IMC both increased the overall variability of preferential flow,but this vari-ability decreased with greater SPT.The length index(LI)had the most significant impact on the preferential flow index(PFI)with an entropy weight of 0.2340,while the height difference of the multifractal spectrum(Δf(α))had the most negligible impact with a weight of 0.0753.Finally,results of redundancy analysis(RDA)and structural equation model(SEM)show that multifractal characteristic in-dicators have a much stronger ability to reflect the degree of preferential flow than developmental characteristic indicators.The T-FTC was the most important factor driving the formation of preferential flow in snowpack-freeze-thaw cycles.Therefore,conducting re-search on preferential flow in cold and arid regions is greatly significant for the utilization of regional water resources and the improve-ment of soil ecological environments.展开更多
The rock masses in the hydro-fluctuation zone of reservoir banks sustain wettingdrying cycles(WDC),thereby affecting the stability of the reservoir bank slope.In this paper,rock masses with argillaceous siltstone and ...The rock masses in the hydro-fluctuation zone of reservoir banks sustain wettingdrying cycles(WDC),thereby affecting the stability of the reservoir bank slope.In this paper,rock masses with argillaceous siltstone and silty mudstone interbedded in Badong Formation were taken as the research object to investigate the variation of strength parameters of soft and hard interbedded rock masses with WDC and dip angle through laboratory experiments and numerical experiments.Some attempts were made to reveal the mechanical properties deterioration mechanism of interbedded rock masses by quantitatively analyzing the contribution of strength parameters deterioration of hard rocks,soft rocks,and bedding planes to the strength parameters deterioration of rock masses.The results indicate that the logarithmic function could be used to describe the deterioration of each strength parameter of both argillaceous siltstone and silty mudstone and bedding plane with the number of WDC.The strength parameters of interbedded rock masses decrease as the number of WDC increases,with the largest decrease after the first cycle and then slowing down in the later cycles.The strength parameters initially decrease and then increase as the dip angles increase.The impact of deteriorated strength parameters of bedding planes and rocks on the deterioration of strength parameters of interbedded rock masses differs significantly with the dip angle,which can be divided into four typical ranges of different controlling factors.展开更多
Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This...Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles.展开更多
Rock subjected to freeze-thaw(F-T)cycles may experience alterations in structural integrity and potentially impact its strength.This study investigates the effects of F-T cycles on granite by analyzing the acoustic em...Rock subjected to freeze-thaw(F-T)cycles may experience alterations in structural integrity and potentially impact its strength.This study investigates the effects of F-T cycles on granite by analyzing the acoustic emission(AE)signals recorded during uniaxial compression tests,characterizing the damage responses of the granite influenced by repeated F-T cycles.The results indicate significant reductions in uniaxial compression strength(UCS)and P-wave velocity as the number of F-T cycles increases.AE analysis reveals progressive damage accumulation,characterized by distinct stages of microcrack development.A parameter,AE energy intensity,is introduced to describe the failure process,showing that the typical AE quiet period in the failure stage is absent in granite pretreated with F-T cycles.Using the superlet transform method,AE frequency and amplitude are analyzed,revealing amplitude evolutions across three frequency domains.The results show that decreasing portions of signals in the highfrequency domain for granite are influenced by F-T cycles.These findings enhance understanding of rock degradation under F-T cycles,offering valuable implications for rock engineering in cold regions.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42171108 and 42101136)Sichuan Science and Technology Program(Nos.2024NSFSC2007 and2025YFHZ0273)Natural Science Starting Project of SWPU(No.2024QHZ029)。
文摘In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.
基金the W.M.Keck Center for Nano-Scale Imaging in the Department of Chemistry and Biochemistry at the University of Arizona(Grant No.RRID:SCR_022884),with funding from the W.M.Keck Foundation Grant.
文摘Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.
基金funding support from the National Natural Science Foundation of China(Grant No.12172019).
文摘In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.
基金supported by grants from the National Natural Science Foundation of China(Nos.42172339,91951205)。
文摘Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems.However,the distribution of microbial functional genes and their influencing factors in hot springs remain largely unclear.Therefore,this study investigated the microbial functional genes and their potential for controlling biogeochemical cycles(C,N,S,and P) in the hot Springs of Tengchong,China,using the Geochip method,a functional gene microarray technology.The examined hot springs have very different microbial functional genes.A total of 22 736 gene probe signals were identified,belonging to 567 functional genes and associated with 15 ecological functions,mainly involving stress response,carbon cycle,nitrogen cycle,sulfur cycle,phosphorus cycle and energy processes.The amyA,narG,dsrA and ppx genes were most abundant in carbon,nitrogen,sulfur and phosphorus cycles,respectively,and were significantly correlated with pH,temperature and SO_(4)^(2-).The diversity and abundance of detected gene probes were negatively correlated with temperature.The α-diversity(i.e.,Shannon index) was high at low temperature and low pH.Molecular functional interactions revealed by the gene connectivity levels were negatively correlated with temperature,pH and SO_(4)^(2-).These results suggested that the abundance,diversity and interactions of microbial functional genes were significantly influenced by geochemical parameters.-In addition,some genera possessed functional genes related to carbon,nitrogen,sulfur,and phosphorus cycles and can synergistically control the biogeochemical cycles of carbon,nitrogen,sulfur and phosphorus.These findings provide new insights into the functional potentials of microorganisms to participate in biogeochemical cycles and their responses to environmental factors in hot springs.
基金financially supported by the National Natural Science Foundation of China(Grant No.42102303)the Natural Science Foundation of Yunnan Province,China(Grant No.202401CF070174)the Xingdian Talent Support Program(Grant No.C619300A130).
文摘Cyclic wetting-drying alternation has a significant influence on the strength and structure of soils.It is prone to causing soil softening and disintegration,highlighting the importance to improve the soil's resistance to disintegration.This paper utilizes a self-developed disintegration test apparatus to analyze the disintegration characteristics of improved red soil under wet-dry cycles,focusing on the disintegration amount and ratio.Furthermore,XRD(X-ray diffraction),SEM(scanning electron microscope),tensile test,and contact angle test are employed to investigate the anti-disintegration behaviors of the improved red soil.The results show that the disintegrating amount and ratio of undisturbed and improved red soil are distinctly different under wet-dry cycles.Linear,stepped,constant and concave but perfect"S"shapes of the disintegrating ratio are observed in the cyclic tests.Cement and lime strengthen the red soil primarily through hydration reaction.The drop experiment confirms that cement plays a crucial role in restraining the disintegration.When the ameliorant content is low,the correlation between pore parameters and disintegration duration of red soil follows the order:mean shape coefficient>fractal dimension>probability entropy>area probability distribution index.With a high ameliorant content,the correlation remains similar,with slightly higher correlation for probability entropy.Under wet-dry cycle conditions,sludge and kaolin can improve the soil through the bonding of clay particles.The improved water repellency greatly enhances the resistance to disintegration of the altered red soil.The research provides valuable insights for the practical application of soil.
基金supported by the National Key Research and Development Program of China(No.2022YFC2903902)the National Natural Science Foundation of China(Nos.52374157 and 52174070)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)the Key Science and Technology Project of Ministry of Emergency Management of the People’s Republic of China(No.2024EMST080802).
文摘In cold-region environments,where complex stresses and mining disturbances occur,rock masses are frequently segmented into discontinuous bodies by fractured structural planes,leading to anisotropic physical and mechanical properties.To explore the evolution of microcracks,degradation characteristics,and failure modes of fractured rocks in cold regions under the influence of freeze-thaw cycles,integrating laboratory experiments with the damage mechanics of freeze-thaw cycles.A numerical model for freeze-thaw cycle damage in rocks with various fracture dip angles was developed.The study revealed that the freeze-thaw expansion force generated during the pore water-ice phase transition is the primary driving factor behind freeze-thaw cycle damage.The initiation and propagation of microcracks and micropores,the detachment of matrix particles,and the loosening of clay mineral structures result in the transformation of the rock from a dense to a porous state,causing significant degradation in macroscopic mechanical properties.As freeze-thaw cycles increase,both the uniaxial compressive strength and the deformation modulus of the rock decrease significantly,with the failure mode gradually shifting from brittle instability to brittle-plastic or plastic failure.The findings of this study offer a practical approach to uncovering the mechanical response mechanisms between freeze-thaw damage in fractured rocks and structural planes.
基金supported by the Qingdao Postdoctoral Science Foundation(No.862205040054)the International Research Fellowship from the Japan Society for the Promotion of Science(Postdoctoral Fellowships for Research in Japan(Standard))the National Natural Science Foundation of China(No.52078093).
文摘The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T and bedding angles is limited,and most traditional rock damage models cannot accurately capture these characteristics.We performed axial compression tests to ex-plore the strength characteristics of bedding slates at the bedding angles ofβ=0°,30°,45°,60°,and 90°under various F-T cycles.The experimental findings suggest that the elastic modulus and uniaxial compressive strength of the slate declined exponentially as the number of F-T cycles increased.Axial compressive strength was characterized by a U-shaped tendency with the bedding angle.This study proposes a damage model for the uniaxial compressive strength of transversely isotropic rock,which integrates the F-T effect,utilizing the enhanced anisotropic Hoek-Brown strength criterion and a statistical damage model.This model was validated using experimental data.This statistical damage model can precisely capture the dual attributes of rock mass strength reduction with F-T cy-cles and variations arising from the loading direction.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52479108,52408391)the Fundamental Research Funds for the Central Universities(2042024kf0032)+1 种基金the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation(Grant No.GZC20241283)the Natural Science Foundation of Hubei Province,China(No.2024AFB160)。
文摘Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes.This study focuses on the effects of drying-wetting cycles and soaking conditions on the long-term behavior of sandstone joints.A total of 12 multi-stage shear creep tests are carried out on sandstone joints subjected to varying drying-wetting cycles under both soaking and un-soaking conditions.Based on the experimental results,the influences of drying-wetting cycles as well as soaking conditions on the microstructure,shear creep displacement,strength,and failure morphologies of sandstone joints are investigated comprehensively.Results indicate that increasing drying-wetting cycles not only yields larger shear creep displacements but also leads to a negative exponential decrease in the strength of sandstone joints.Besides,soaking conditions strongly influence the creep behavior of sandstone joints.The failure strength and long-term strength of sandstone joints for soaked samples decrease by 13.6%–29.0%and 19.4%–37.5%,respectively,as compared to unsoaked samples.Furthermore,four distinct stages in the shear creep process were identified according to the results obtained from multi-stage shear creep tests and computerized tomography scans,and three creep failure modes of sandstone joints are thus determined.Finally,the influence mechanism of drying-wetting cycles and soaking conditions on the creep failure modes of sandstone joints is revealed.Drying-wetting cycles and soaking conditions diminish the influence of asperities on the shear creep behavior of joints,thereby reducing the resistance of joints to long-term deformation.
基金supported by National Natural Science Foundation of China(Grant No.42050201)National Key Research and Development Program of China(Grant No.2020YFC1522200)。
文摘Dry-wet cycle is a key factor in surface weathering of earthen heritage,which remains insufficiently explained.It involves the interaction of humidity,stress,and damage.Using the RFPA(realistic failure process analysis)numerical method,this study reproduced the processes of humidity diffusion,deformation,stress,and damage evolution under dry-wet cycles in the soil site of Suoyang City,China.The numerical results indicate that the drying phase following rainfall has the most significant deteriorative impact on the earthen heritage.The evaporation of surface moisture during this phase causes volume shrinkage,which in turn generates tensile stress and leads to the formation of numerous desiccation cracks.Desiccation cracks provide channels for moisture diffusion,which further exacerbates generation of the cracks,leading to a mutual promotion between the two phenomena.Furthermore,during the wetting phase,the model elements undergo hygroscopic expansion,resulting in a slight increase in strain and displacement.Previously formed cracks may exhibit temporary narrowing or closure,but will revert during the subsequent drying phase.Ultimately,the overall displacement increases with the number of dry-wet cycles.The findings provide a theoretical foundation for protection against surface weathering and other damage in earthen heritage in arid regions.
基金the financial support provided by the Major Science and Technology Project of Xinjiang Uygur Autonomous Region(Grant NO.2024A01003)the National Natural Science Foundation of China(Grant NO.51508556)+3 种基金the Key Support Project of the National Natural Science Foundation of China Joint Fund(Grant No.U24B2039)the Natural Science Foundation of Jiangxi Province(Grant NO.20232BAB203079,20224BAB213045)Program of China Scholarship Council(Grant NO.202406430056)the Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMTB)(Grant NO.BBJ2025081)。
文摘Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability and often triggers collapses or landslides.Existing studies focus mostly on singlescale or single-factor analyses but cannot fully capture the coupled mechanisms driving instability under freeze-thaw conditions.This study aimed to establish a theoretical framework to quantitatively characterize the evolution of rock mass stability,thereby providing a sound basis for hazard prediction and prevention.By integrating limit equilibrium theory with rock frost heave and circular hole expansion theory,mechanical models for sliding-and toppling-type dangerous rock masses were established.Three key factors were incorporated:frost heave forces acting on throughgoing structural planes,rock property deterioration in nonpenetrative sections,and progressive freezing depth development.A theoretical relationship between the stability coefficient and the number of freeze-thaw cycles was derived.By considering the Zimei Peaks rock masses in Gansu Province as the case study and conducting parametric analyses,the results revealed that the stability coefficient rapidly decreases during the initial cycles,followed by a slower decrease and eventual stabilization.The coefficient decreased 4.5 times more during the first 15 cycles than during the subsequent 15 cycles.Moreover,stability degradation was strongly influenced by the freezing temperature,initial porosity,and rock debris loss ratio,with critical thresholds determined at a 3.8%porosity and a 0.83 debris loss ratio.The findings indicated that stability deterioration is governed by the coupled effects of frost heave loading,microstructural damage accumulation,and freezing depth development,with clear stagedependent and threshold-driven patterns.This work provides not only a quantitative explanation of instability mechanisms in cold-region rock masses but also practical guidance for engineering stability assessment and disaster mitigation.
基金Projects(52378392,52478390)supported by the National Natural Science Foundation of ChinaProject(2024J08213)supported by the Natural Science Foundation of Fujian Province,China+1 种基金Project(00387088)supported by the“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province,ChinaProject(GY-Z23072)supported by the Scientific Research Foundation of Fujian University of Technology,China。
文摘Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.
基金The financial support provided by the Research Grant Office at Sharif University Technology(Grant Nos.G4010902 and QB020105)is gratefully acknowledged.
文摘Infrastructure construction in seasonally frozen regions,covering 23%of total land,faces challenges from freeze-thaw(F-T)induced damages.Expansive soils,as an important problematic soil undergo major hydromechanical properties changes influenced by F-T cycles.Sand-bentonite mixtures are extensively used for constructing earthen hydraulic barriers in cold regions.This study investigates the influence of F-T cycles on multi-directional strains and anisotropic hydraulic conductivity of different sand-bentonite mixtures prepared at optimum water content and experienced three distinct saturation levels.Results indicate that saturation level and bentonite content significantly influence volumetric strain under F-T cycles.The simultaneous effect of ice lens formation,expanding micro-voids,and suction generated by freezing processes cause different volumetric behaviors at varying saturation degrees.The dry specimen exhibits no strain under F-T cycles,while optimum and saturated specimens experienced final volumetric strains of 1.02%and 3.03%,respectively.Notably,during freezing,the specimen at optimumwater content shrank,while the saturated specimen expanded.Increasing bentonite content from 40%to 70%developed freezing-induced shrinkage,from 1.73%to 4.72%,with higher thaw strain attributed to increased specimen plasticity.Also,dimensional variations revealed the cross-anisotropic nature of specimens,highlighting direct influence of water content on the shrinkage ratio.F-T cycles also increased hydraulic conductivity along both orthogonal directions by two orders of magnitude,while the anisotropy ratio decreased by about 3 after 9 F-T cycles,indicating altered pore structures.F-T cycles induce reduced swelling potential and compressibility over subsequent cycles.Microstructural observations also confirmed the F-T effects on the enhancement of porosity.
基金The financial support from Project(Grant Nos.52278432,and 52168066)of National Natural Science Foundation of China and Project(Grant No.K2023G033)of the Science and Technology Research and Development Plan of China National Railway Group Co.,Ltd.were greatly appreciated.
文摘This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to consider the different initial rock fabrics.The long-term relative humidity(RH)cycles under two amplitudes were imposed on red mudstone to simulate the weathering process.After RH cycles,a series of uniaxial compression tests,Brazilian splitting tests and bender-extender element tests were carried out to examine the reduction in strength and stiffness.The objective of this study is to develop an extended stress-volume framework characterizing the degradation of natural red mudstone both at microscale and macroscale.Accompanied by the irreversible swelling of the rock specimen is the progressive degradation of strength,stiffness and Poisson's ratio.A unified exponential degradation model in terms of the irreversible volumetric strain was thus proposed to capture such a degradation pattern.The effect of the initial rock fabric was evident.The highest degradation rate and potential were identified in slightly weathered specimens.Significant slaking of aggregates and crack propagation were confirmed by scanning electron microscope(SEM)micrographs,which were considered as the main consequence of structure damage leading to degradation of mechanical properties.The structure damage during RH cycles denoted the hysteresis nature in the response to the cycling hydraulic reaction,in turn causing the increase in volumetric strain.Thus,the stress-volume relation rather than the suction relation was found in more reasonable agreement with the experimental results.
文摘There is a widespread policy assumption that anthropogenic greenhouse gases are the main driver of the observed 1°C rise in global surface air temperatures since‘pre-industrial’times.This paper demonstrates that the onset of the current warming trend began in the mid-19th century and is consistent with the rising phase of variable global warming and cooling cycles in both the Northern and Southern Hemispheres.Hemispheres.The last trough of the millennial cycle,the Little Ice Age,coincides approximately with the baseline of pre-industrial times used to calculate the impact of Anthropogenic Global Warming.Yet,half of the observed 20th century temperature rise occurred before 1950 when carbon dioxide levels remained low,with the remaining half happening at a similar rate of warming despite the much higher concentrations of greenhouse gases in the atmosphere.This study shows that when the amplitudes and rates of change of the long-term global cycles are considered,the anthropogenic component of warming can be reduced to 38%(using factors derived from the latest IPCC Working Group reports)to as little as 25%(using observational flux data of dominant Short Wave Absorbed Surface Radiation).These global climate cycles can be extrapolated into the future and the implications for policy of a large natural component to climate change are explored—in particular,the potential for mitigation strategies to have minimal impact and for the climate to cool consequent upon a cyclic down-phase.
基金supported by the National Natural Science Foundation of China(No.42107168).
文摘Aiming at challenges posed by rock freezethaw(FT)in cold regions rock mass engineering,it is of great significance to analyze its macro-and micromechanical properties and damage laws for the smooth progress of construction.In this study,indoor freezethaw cycle(FTC)tests on sandstone were conducted to analyze the mass change rate,density change rate,longitudinal wave velocity change rate,microstructure change and mechanical properties of sandstone after FTC.A microscopic FT damage variable reflecting the FT damage was defined based on the changes of rock porosity before and after the FTC,enabling the derivation of the total damage variable under the coupled action of FTC and mechanical loading.A damage evolution equation and a microscopic damage constitutive model for rock under coupled FTC and confining pressure were established by using Lemaitre’s strain equivalence principle,the theory of continuous damage mechanics,and the assumption that the failure of rock micro-units follows the SMP criterion.The rationality and accuracy of the model were verified using triaxial compression test data for FT-damaged rock.The results show that both macroand micro-mechanical properties of sandstone are degraded under the action of FTC,resulting in significant damage.The developed microscopic damage constitutive model can reflect the stress-strain characteristics of the whole process of FT rock triaxial compression,with excellent agreement observed between experimental and theoretical curves.This validates the reliability of the model and the methodology for determining its parameters.Additionally,defining the microscopic FT damage variable based on rock porosity changes is demonstrated to be a feasible and highly accurate approach to reflect rock FT damage degree.This model expands the damage model for rock under the coupling effect of FTC and confining pressure,further illuminating the damage mechanism and failure law in such environments.The findings provide references for the construction of rock mass engineering in cold regions.
基金Under the auspices of the Natural Science Foundation of China(No.42272299)The Key Projects of Jilin Provincial Department of Science and Technology(No.20240203004NC)+1 种基金National Key Research and Development Program of China(No.2022YFD1500500)Graduate Innovation Fund of Jilin University(No.2024CX111)。
文摘The freeze-thaw process is crucial for forming soil macropore structure to promote movement of water and salt downward by preferential flow in seasonally frozen regions.However,the freeze-thaw process of soil is hindered by the snowpack,and the effects of the snowpack on the soil macropore structure and its implications on the formation of preferential flow are not well understood.This study collected soil samples from Da’an City,Northeast China,on July 15 and 16,2022,and conducted an indoor soil column snowpack-freeze-thaw tracing experiment on October 10 to 30,2022,to reveal the impact of snowpack and freeze-thaw cycles(FTC)on the forma-tion of preferential flow.The experiments were carried out with three levels of initial moisture content(IMC)of the soil column,the times of freeze-thaw cycles(T-FTC),and the snowpack thickness(SPT).Results show that increases in both IMC and SPT decreased the max infiltration depth(MID)of preferential flow.Greater T-FTC increased the MID and non-uniformity of the wet front trace and promoted the creation of preferential flow.The T-FTC and IMC both increased the overall variability of preferential flow,but this vari-ability decreased with greater SPT.The length index(LI)had the most significant impact on the preferential flow index(PFI)with an entropy weight of 0.2340,while the height difference of the multifractal spectrum(Δf(α))had the most negligible impact with a weight of 0.0753.Finally,results of redundancy analysis(RDA)and structural equation model(SEM)show that multifractal characteristic in-dicators have a much stronger ability to reflect the degree of preferential flow than developmental characteristic indicators.The T-FTC was the most important factor driving the formation of preferential flow in snowpack-freeze-thaw cycles.Therefore,conducting re-search on preferential flow in cold and arid regions is greatly significant for the utilization of regional water resources and the improve-ment of soil ecological environments.
基金supported by the Chinese National Key R&D Program(No.2022YFC3080200)the Chinese National Natural Science Foundation(No.42090054)。
文摘The rock masses in the hydro-fluctuation zone of reservoir banks sustain wettingdrying cycles(WDC),thereby affecting the stability of the reservoir bank slope.In this paper,rock masses with argillaceous siltstone and silty mudstone interbedded in Badong Formation were taken as the research object to investigate the variation of strength parameters of soft and hard interbedded rock masses with WDC and dip angle through laboratory experiments and numerical experiments.Some attempts were made to reveal the mechanical properties deterioration mechanism of interbedded rock masses by quantitatively analyzing the contribution of strength parameters deterioration of hard rocks,soft rocks,and bedding planes to the strength parameters deterioration of rock masses.The results indicate that the logarithmic function could be used to describe the deterioration of each strength parameter of both argillaceous siltstone and silty mudstone and bedding plane with the number of WDC.The strength parameters of interbedded rock masses decrease as the number of WDC increases,with the largest decrease after the first cycle and then slowing down in the later cycles.The strength parameters initially decrease and then increase as the dip angles increase.The impact of deteriorated strength parameters of bedding planes and rocks on the deterioration of strength parameters of interbedded rock masses differs significantly with the dip angle,which can be divided into four typical ranges of different controlling factors.
基金the financial support by the National Natural Science Foundation of China(Grant No.52108397)“Xiaohe”Science and Technology Talent Special Project(Grant No.2024 TJ-X06)Water Resources Science and Technology Project of Hunan Province(Grant No.XSKJ2023059-41).
文摘Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles.
基金supported by the National Natural Science Foundation of China(Grant Nos.52179099 and U23A6018)The funding supported by the Natural Science Foundation of Hebei Province,China(Grant No.2020HBQZYC001)were also acknowledged.
文摘Rock subjected to freeze-thaw(F-T)cycles may experience alterations in structural integrity and potentially impact its strength.This study investigates the effects of F-T cycles on granite by analyzing the acoustic emission(AE)signals recorded during uniaxial compression tests,characterizing the damage responses of the granite influenced by repeated F-T cycles.The results indicate significant reductions in uniaxial compression strength(UCS)and P-wave velocity as the number of F-T cycles increases.AE analysis reveals progressive damage accumulation,characterized by distinct stages of microcrack development.A parameter,AE energy intensity,is introduced to describe the failure process,showing that the typical AE quiet period in the failure stage is absent in granite pretreated with F-T cycles.Using the superlet transform method,AE frequency and amplitude are analyzed,revealing amplitude evolutions across three frequency domains.The results show that decreasing portions of signals in the highfrequency domain for granite are influenced by F-T cycles.These findings enhance understanding of rock degradation under F-T cycles,offering valuable implications for rock engineering in cold regions.