This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw ...This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.展开更多
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen...With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.展开更多
This work examines the environmental and geochemical impact of recycled aggregate concrete production with properties representative for structural applications.The environmental influence of cement content,aggregate ...This work examines the environmental and geochemical impact of recycled aggregate concrete production with properties representative for structural applications.The environmental influence of cement content,aggregate production,transportation,and waste landfilling is analysed by undertaking a life cycle assessment and considering a life cycle inventory largely specific for the region.To obtain a detailed insight into the optimum life cycle parameters,a sensitivity study is carried out in which supplementary cementitious materials,different values of natural-to-recycled aggregate content ratio and case-specific transportation distances were considered.The results show that carbon emissions were between 323 and 332 kgCO_(2)e per cubic metre of cement only natural aggregate concrete.These values can be reduced by up to 17%by replacing 25%of the cement with fly ash.By contrast,carbon emissions can increase when natural coarse aggregates are replaced by recycled aggregates in proportions of 50%and 100%,and transportation is not included in analysis.However,the concrete with 50%recycled aggregate presented lower increase,only 0.3%and 3.4%for normal and high strength concrete,respectively.In some cases,the relative contribution of transportation to the total carbon emissions increased when cement was replaced by fly ash in proportions of 25%,and case-specific transportation distances were considered.In absolute values,the concrete mixes with 100%recycled aggregates and 25%fly ash had lower carbon emissions than concrete with cement and natural aggregates only.Higher environmental benefits can be obtained when the transportation distances of fly ash are relatively short(15–25 km)and the cement replacement by fly ash is equal or higher than 25%,considering that the mechanical properties are adequate for practical application.The observations from this paper show that recycled aggregate concrete with strength characteristics representative for structural members can have lower carbon emissions than conventional concrete,recommending them as an alternative to achieving global sustainability standards in construction.展开更多
1 Introduction Low-dimensional nanostructures, such as nanorods, nanowires, and nanotubes, have received much attention for their superior optical, electrical, catalytic and magnetic properties. Owing to their low di...1 Introduction Low-dimensional nanostructures, such as nanorods, nanowires, and nanotubes, have received much attention for their superior optical, electrical, catalytic and magnetic properties. Owing to their low dimensionality and quantum continement effect, low-dimensional nanoscale materials can be exploited as fundamental building blocks for nanoscience and nanodevices^[1-3]. In recent years, efforts have been devoted to develop new approaches to synthesize one-dimensional(lD) nanostructrued vanadium oxides or vanadates materials, such as V205, NaV2Os, and CuV206, which have been widely investigated in catalytic or electrochemical fields due to their outstanding structural flexibility^[4-6].展开更多
The degradation progress of recycled aggregate concrete(RAC) subjected to sulfate attack under wetting-drying cycles and flexural loading is studied. Three different stress ratios(0, 0.3 and 0.5) were applied in this ...The degradation progress of recycled aggregate concrete(RAC) subjected to sulfate attack under wetting-drying cycles and flexural loading is studied. Three different stress ratios(0, 0.3 and 0.5) were applied in this test. The variations of relative dynamic elastic modulus Erd and water-soluble SO2-4 contents in RAC were used to evaluate degradation progress. The changes in mineral products and microstructures of interior concrete were investigated by means of X-ray diffraction(XRD), the environmental scanning electron microscope(ESEM) and X-ray computed tomography(X-CT). The results indicate that flexural loading accelerates the degradation of RAC under sulfate attack and wetting-drying cycles by expediting the transmission of SO2-4 into interior concrete. Furthermore, the accelerated effect of flexural loading is more obvious with the increase of stress ratio, that is because higher stress ratios can accelerate the extension of microcracks and generate more channels for the transmission of SO2-4. Also, more expansive products(gypsum and ettringite) are generated by the reaction of Ca(OH)2 with SO2-4, which can further accelerate the degradation of RAC.展开更多
In order to study the effect of different recycled fine aggregate and recycled coarse aggregate substitution rate on the sulfate resistance of recycled concrete under dry-wet cycle conditions,the substitution rate of ...In order to study the effect of different recycled fine aggregate and recycled coarse aggregate substitution rate on the sulfate resistance of recycled concrete under dry-wet cycle conditions,the substitution rate of recycled fine aggregate and recycled coarse aggregate was designed to be 0%/0%,10%/0%,0%/25%,10%/25%,0%/50%and 10%/50%of the six groups of mixture ratio.The mass loss rate and relative dynamic modulus of each group of test blocks were tested respectively and the optimal ratio was selected.The Wiener distribution probability method was used to establish the reliability function to optimize the remaining life of the ratio.The results show that the dynamic elastic modulus and mass show a trend of increasing first and then decreasing during the dry-wet cycles of sulfate.The recycled concrete has the strongest resistance to sulfate attack under the substitution rate of recycled fine aggregate and recycled coarse aggregate is 10%and 0%,and the test blocks will be damaged after being subjected to 182 times of dry-wet cycles of sulfate.The effect of recycled coarse aggregate on the sulfate attack resistance of the test block is more obvious than that of the recycled fine aggregate,which leads to the durability of the concrete being greatly reduced.展开更多
Microbial-induced carbonate precipitation(MICP)technique has been adopted in geotechnical engineering widely.In this study,the effect of drying-wetting cycles on MICP-recycled shredded coconut coir(RSC)reinforced calc...Microbial-induced carbonate precipitation(MICP)technique has been adopted in geotechnical engineering widely.In this study,the effect of drying-wetting cycles on MICP-recycled shredded coconut coir(RSC)reinforced calcareous sand was studied,and the deterioration mechanism under drying-wetting cycles was revealed.Test results indicated that drying-wetting cycles exert an important influence on the durability of MICP-RSC reinforced specimens.With the increase of drying-wetting cycles N,the specimens demonstrated significant increase in mass loss rate and critical void ratio,decrease in maximum shear modulus,peak strength and toughness.Furthermore,an increase in the initial relative density reduced the deterioration of MICP-RSC reinforced specimens exposed to drying-wetting cycles.Higher initial relative density of the specimen correlates with an increased maximum shear modulus,peak stress and toughness,a decreased in permeability and critical void ratio.Microanalysis revealed that the generated calcium carbonate adhering to sand particles and RSC gradually dropped off with the increase of N,weakened cementation,and led to the deterioration of MICP-RSC reinforced specimens,which is consistent with the deterioration characteristics under drying-wetting cycles.展开更多
The objective of this project was to characterize the freeze-thaw properties of recycled concrete(RCA)and asphalt(RAP)as unbound base and to assess how they behaved in the field for nearly 8 years.This paper includes ...The objective of this project was to characterize the freeze-thaw properties of recycled concrete(RCA)and asphalt(RAP)as unbound base and to assess how they behaved in the field for nearly 8 years.This paper includes an examination of existing information,laboratory studies of freeze-thaw behavior,and evaluation of data from Mn ROAD field-test sections in a seasonally cold region,i.e.,in Minnesota,USA.Test sections were constructed using recycled materials in the granular base layers at the Mn ROAD test facility.One test section included 100%RAP,another 100%RCA,a third one a 50/50blend of RCA/natural aggregate,and a fourth one only natural aggregate(Class 5)as a control.The stiffness(i.e.,elastic modulus)was monitored during construction and throughout the pavement life by the Minnesota Department of Transportation,along with the variation of temperatures and moisture regimes in the pavement to determine their effects on pavement performance.The resilient modulus of each material was determined by bench-scale testing in accordance with NCHRP 1-28a,as well as by field-scale tests incorporating a falling-weight deflectometer.Specimens were subjected to as many as 20 cycles of freeze-thaw in the laboratory,and the change in their resilient modulus was measured.In the field-test sections constructed with the same materials as the base course,temperature,moisture,and field modulus(from fallingweight deflectometer tests)were monitored seasonally for nearly 8 years.From the temperatures in the base course layer,the number of freeze-thaw cycles experienced in the field was determined for each test section.Inferences were made relative to modulus change versus freeze-thaw cycles.Conclusions were drawn for long-term field performances of the recycled base(RAB)in comparison to natural aggregate.展开更多
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ...The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.展开更多
The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The tw...The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The two-way shape memory effect in quenched thin bar resulted from the preferential formation/extinction of martensite variant due to the internal quench stress, and the variant was formed at an angle of about 45 deg. with the tension direction ([001] of the βphase). Initial thermomechanical cycling under relatively low stress single variant stress-induced martensite was formed at an angle of 45 deg. with the tension and its morphology was a lath of parallel twins. More than one group of variants were formed after several training cycles and such variants also caused tilting of some thermally formed accommodated martensite. By overheating the trained sample containing stabilized multi-variants of stress-induced martensite, very coarse martensite structure with a strong asymmetry was produced, which caused the reverse two-way shape memory effect.展开更多
A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the...A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the active material were eliminated by high temperature calcining. Subsequently, Li2CO3, LiOH-H20 and LiAc-2H2O were added into the recycled powders to adjust the Li/Co molar ratio to 1.00. The new LiCoO2 was obtained by calcining the mixture at 850℃ for 12 h in air. The structure and morphology of the recycled powders and resulting samples were studied by XRD and SEM techniques, respectively. The layered structure of LiCoO2 synthesized by adding Li2CO3 is the best, and it is found to have the best characteristics as a cathode material in terms of charge-discharge capacity and cycling performance. The first discharge capacity is 160 mAh·g^-1 between 3.0-4.3 V. The discharge capacity after cycling for 50 times is still 145.2 mAh·g^-1.展开更多
Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular compone...Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular components in the circulating water. The objective of the simulation is to determine the maximum allowable concentrations of ions and molecules as well as the choice of conditions for deposition or adsorption.First of all, our examinations decrease the concentration of copper ions and fatty acids in the circulating water. By pre-mixing water with the highest concentration of these ions, a reduction of copper ion and fatty acid concentrations in the recycled water occurs. The results do not only ensure the achievement of the maximum permitted concentration(MPC) of copper and iron, significantly reducing the amount of oxidized copper, they also make it possible to use the united sewage as current water for the flotation process. Mixing and adding filtrate of tailings, discharges of urban wastewater treatment and effluent of ash pit of thermal power stations(TPS) to recycled water causes an increase in the capacity of the enrichment plant by 15–17%.展开更多
The mechanical properties of polyvinyl alcohol (PVA) films prepared by evaporating water from freeze/thaw cycled gel were investigated as a function of the number of freeze/thaw cycles. The maximum stress of the PVA f...The mechanical properties of polyvinyl alcohol (PVA) films prepared by evaporating water from freeze/thaw cycled gel were investigated as a function of the number of freeze/thaw cycles. The maximum stress of the PVA film prepared by freeze/thaw cycling was larger than that prepared without the freeze/thaw cycle process. The largest maximum stress was 46.2 MPa for a film prepared with 10 freeze/thaw cycles, which was twice as large as that for a cast PVA film without freeze/thaw cycling (22.3 MPa). This is due to the formation of small crystallites during the freeze/thaw cycle process. Furthermore, when the film was annealed at 130°C, the maximum stress was as high as 181 MPa which was comparable to that for PVA films prepared using additives. The crystallinity is not the main factor that determines the maximum stress for either the non-annealed or annealed freeze/thaw cycled films, but the glass transition temperature is well correlated with the maximum stress, irrespective of the annealing process. This is due to the different molecular morphology;the non-annealed freeze/thaw cycled film consists of many small crystallites, but the annealed film consists of larger crystallites formed during the annealing process.展开更多
Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a...Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.展开更多
The indiscriminate utilization of nondegradable polyethylene terephthalate(PET)-based products has triggered serious environmental pollution that has to be resolved vigorously.A simple synthesis of N-doped carbon nano...The indiscriminate utilization of nondegradable polyethylene terephthalate(PET)-based products has triggered serious environmental pollution that has to be resolved vigorously.A simple synthesis of N-doped carbon nanotubes from recycled PET(NCNTs_(r-PET))was developed by a nitric acid-assisted hydrothermal method.Experimental results and theoretical calculations show that the intrinsic defects in CNTs_(r-PET)would induce N-doping by NH_(3)generated from nitric acid during the hydrothermal process,thus producing the NCNTs_(r-PET).The life cycle assessment proves that the developed method for N-doped CNTs using r-PET as the carbon source is more environmentally friendly than the conventional chemical vapor deposition using acetylene as the carbon source.As a typical application,the NCNTs_(r-PET)delivered an impressive sodium storage capacity with an ultralong lifespan.This work not only provides a new route to upcycling waste plastics into valuable carbonaceous materials in an ecofriendly manner,but also reveals a basic understanding of the N-doping mechanism in carbonaceous materials.展开更多
Generally,plastics pose a variety of environmental impacts due to their increased use and non-biodegradability.End-of-life treatment is a viable way of recovering energy from plastics while at the same time reducing t...Generally,plastics pose a variety of environmental impacts due to their increased use and non-biodegradability.End-of-life treatment is a viable way of recovering energy from plastics while at the same time reducing the amount of plastics disposed of in landfills.This paper studies the environmental impact of Non-Recycled Plastics(NRP)-to-energy processes.Three waste treatment processes were considered for NRP:pyrolysis,waste-to-energy(WtE),and landfill.The environmental impact assessment results indicated that conversion technologies such as pyrolysis and WtE are preferred over landfill.The total energy consumed in the pyrolysis process was 24635.7 MJ/tonne.The conversion technologies have a lower environmental impact and produced net positive energy from NRP.The global warming potential shows that pyrolysis(3.91 kg eq.CO_(2))contributes the least to global warming than waste-to-energy(18.56 kg eq.CO_(2))and landfill(17.5 kg eq.CO_(2)).However,sensitivity analysis suggested that the inefficiencies of the current conversion technologies should be addressed.Between the two technologies studied,pyrolysis contributed less environmental burden,having a lower global warming potential,a higher efficiency in energy conversion,and less harmful emissions such as selenium and methane.展开更多
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st...Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions.展开更多
The development of sustainable techniques to produce high-performance zeolite is essential to achieve green production in industry.Herein,we report an eco-friendly route to synthesizing hierarchical Beta zeolite from ...The development of sustainable techniques to produce high-performance zeolite is essential to achieve green production in industry.Herein,we report an eco-friendly route to synthesizing hierarchical Beta zeolite from kaolinite and recycled mother liquor.The results reveal that the unutilized species(such as silicon species and Na+)in mother liquor stayed in a stable concentration during eleven recycled experiments.Moreover,the synthesized Beta zeolites still have comparable physicochemical properties and catalytic performance in the esterification of levulinic acid with ethanol over the initial zeolite although eleven recycled experiments.Life cycle assessment exhibits that the synthesis of Beta zeolite with recycled mother liquor can reduce global warming potential by 23%and resource depletion-water use by 36%compared to that without recycled mother liquor.This quantitatively demonstrates that the approach proposed in this work is really a sustainable one,extremely increasing the utilization efficiency of raw materials and decreasing the environmental burden.展开更多
The present study attempts to investigate the effect of moisture conditioning on the in- direct tensile strength (ITS) of cold recycled mixture with bitumen emulsion. Firstly, samples were prepared using a Superpave...The present study attempts to investigate the effect of moisture conditioning on the in- direct tensile strength (ITS) of cold recycled mixture with bitumen emulsion. Firstly, samples were prepared using a Superpave gyratory compactor. They were hence condi- tioned using moisture induced sensitivity tester (MIST) device. Factorial design was carried out considering four factors each at two different levels. These factors were specimen thickness, air voids content, pressure and number of cycles. In the MIST device, samples are cyclically subjected to water pressure through the sample pores. The MIST conditioned samples were tested for indirect tensile strength. The analysis of two-level full-factorial designed experiments revealed that all four factors have a negative effect on tensile strength of cold recycled mixture with bitumen emulsion. Specimen thickness was the most significant factor affecting the tensile strength followed by air voids content. In two- factor interaction, specimen thickness-number of cycles, air voids content-pressure, and pressure-number of cycles were significant. The most significant three-factor interaction was specimen thickness-pressure-number of cycles. The results from the study suggest that in measuring tensile strength, the appropriate specimen thickness and air voids content should be selected to quantify the representative tensile strength for in-situ conditions.展开更多
基金Funded by the Science and Technology Program of Gansu Province(Nos.25JRRA497,23ZDFA017)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0950000)High-level Talent Funding of Kashi。
文摘This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.
基金This research was funded by the National Natural Science Foundation of China(52078068)Practice Innovation Program of Jiangsu Province(KYCX22_3082).
文摘With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.
文摘This work examines the environmental and geochemical impact of recycled aggregate concrete production with properties representative for structural applications.The environmental influence of cement content,aggregate production,transportation,and waste landfilling is analysed by undertaking a life cycle assessment and considering a life cycle inventory largely specific for the region.To obtain a detailed insight into the optimum life cycle parameters,a sensitivity study is carried out in which supplementary cementitious materials,different values of natural-to-recycled aggregate content ratio and case-specific transportation distances were considered.The results show that carbon emissions were between 323 and 332 kgCO_(2)e per cubic metre of cement only natural aggregate concrete.These values can be reduced by up to 17%by replacing 25%of the cement with fly ash.By contrast,carbon emissions can increase when natural coarse aggregates are replaced by recycled aggregates in proportions of 50%and 100%,and transportation is not included in analysis.However,the concrete with 50%recycled aggregate presented lower increase,only 0.3%and 3.4%for normal and high strength concrete,respectively.In some cases,the relative contribution of transportation to the total carbon emissions increased when cement was replaced by fly ash in proportions of 25%,and case-specific transportation distances were considered.In absolute values,the concrete mixes with 100%recycled aggregates and 25%fly ash had lower carbon emissions than concrete with cement and natural aggregates only.Higher environmental benefits can be obtained when the transportation distances of fly ash are relatively short(15–25 km)and the cement replacement by fly ash is equal or higher than 25%,considering that the mechanical properties are adequate for practical application.The observations from this paper show that recycled aggregate concrete with strength characteristics representative for structural members can have lower carbon emissions than conventional concrete,recommending them as an alternative to achieving global sustainability standards in construction.
基金Supported by the Special Funds for Major State Basic Research Project of China(No.2009CB220104)the Science and Technology Bureau of Shenyang, China(Nos.108149-2-00, 1091242-6-00)
文摘1 Introduction Low-dimensional nanostructures, such as nanorods, nanowires, and nanotubes, have received much attention for their superior optical, electrical, catalytic and magnetic properties. Owing to their low dimensionality and quantum continement effect, low-dimensional nanoscale materials can be exploited as fundamental building blocks for nanoscience and nanodevices^[1-3]. In recent years, efforts have been devoted to develop new approaches to synthesize one-dimensional(lD) nanostructrued vanadium oxides or vanadates materials, such as V205, NaV2Os, and CuV206, which have been widely investigated in catalytic or electrochemical fields due to their outstanding structural flexibility^[4-6].
基金The National Natural Science Foundation of China(No.51578141)the Major State Basic Research Development Program of China(No.2015CB655102)China-Japanese Research Cooperative Program-Ministry of Science and Technology in China(No.2016YFE0118200)
文摘The degradation progress of recycled aggregate concrete(RAC) subjected to sulfate attack under wetting-drying cycles and flexural loading is studied. Three different stress ratios(0, 0.3 and 0.5) were applied in this test. The variations of relative dynamic elastic modulus Erd and water-soluble SO2-4 contents in RAC were used to evaluate degradation progress. The changes in mineral products and microstructures of interior concrete were investigated by means of X-ray diffraction(XRD), the environmental scanning electron microscope(ESEM) and X-ray computed tomography(X-CT). The results indicate that flexural loading accelerates the degradation of RAC under sulfate attack and wetting-drying cycles by expediting the transmission of SO2-4 into interior concrete. Furthermore, the accelerated effect of flexural loading is more obvious with the increase of stress ratio, that is because higher stress ratios can accelerate the extension of microcracks and generate more channels for the transmission of SO2-4. Also, more expansive products(gypsum and ettringite) are generated by the reaction of Ca(OH)2 with SO2-4, which can further accelerate the degradation of RAC.
基金Supported by the National Natural Science Foundation of China(51468039,51868044)。
文摘In order to study the effect of different recycled fine aggregate and recycled coarse aggregate substitution rate on the sulfate resistance of recycled concrete under dry-wet cycle conditions,the substitution rate of recycled fine aggregate and recycled coarse aggregate was designed to be 0%/0%,10%/0%,0%/25%,10%/25%,0%/50%and 10%/50%of the six groups of mixture ratio.The mass loss rate and relative dynamic modulus of each group of test blocks were tested respectively and the optimal ratio was selected.The Wiener distribution probability method was used to establish the reliability function to optimize the remaining life of the ratio.The results show that the dynamic elastic modulus and mass show a trend of increasing first and then decreasing during the dry-wet cycles of sulfate.The recycled concrete has the strongest resistance to sulfate attack under the substitution rate of recycled fine aggregate and recycled coarse aggregate is 10%and 0%,and the test blocks will be damaged after being subjected to 182 times of dry-wet cycles of sulfate.The effect of recycled coarse aggregate on the sulfate attack resistance of the test block is more obvious than that of the recycled fine aggregate,which leads to the durability of the concrete being greatly reduced.
基金support from the National Natural Science Foundations of China(No.52171282,41831280)Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04)supported by Taishan Scholars of Shandong Province,China(No.tsqn202306098).
文摘Microbial-induced carbonate precipitation(MICP)technique has been adopted in geotechnical engineering widely.In this study,the effect of drying-wetting cycles on MICP-recycled shredded coconut coir(RSC)reinforced calcareous sand was studied,and the deterioration mechanism under drying-wetting cycles was revealed.Test results indicated that drying-wetting cycles exert an important influence on the durability of MICP-RSC reinforced specimens.With the increase of drying-wetting cycles N,the specimens demonstrated significant increase in mass loss rate and critical void ratio,decrease in maximum shear modulus,peak strength and toughness.Furthermore,an increase in the initial relative density reduced the deterioration of MICP-RSC reinforced specimens exposed to drying-wetting cycles.Higher initial relative density of the specimen correlates with an increased maximum shear modulus,peak stress and toughness,a decreased in permeability and critical void ratio.Microanalysis revealed that the generated calcium carbonate adhering to sand particles and RSC gradually dropped off with the increase of N,weakened cementation,and led to the deterioration of MICP-RSC reinforced specimens,which is consistent with the deterioration characteristics under drying-wetting cycles.
基金supported by the TPF-5 (129) Recycled Unbound Materials Pool Fund administered by the Minnesota Department of Transportation and the Recycled Materials Resource Center (RMRC)supported by the U.S. Federal Highway Administration
文摘The objective of this project was to characterize the freeze-thaw properties of recycled concrete(RCA)and asphalt(RAP)as unbound base and to assess how they behaved in the field for nearly 8 years.This paper includes an examination of existing information,laboratory studies of freeze-thaw behavior,and evaluation of data from Mn ROAD field-test sections in a seasonally cold region,i.e.,in Minnesota,USA.Test sections were constructed using recycled materials in the granular base layers at the Mn ROAD test facility.One test section included 100%RAP,another 100%RCA,a third one a 50/50blend of RCA/natural aggregate,and a fourth one only natural aggregate(Class 5)as a control.The stiffness(i.e.,elastic modulus)was monitored during construction and throughout the pavement life by the Minnesota Department of Transportation,along with the variation of temperatures and moisture regimes in the pavement to determine their effects on pavement performance.The resilient modulus of each material was determined by bench-scale testing in accordance with NCHRP 1-28a,as well as by field-scale tests incorporating a falling-weight deflectometer.Specimens were subjected to as many as 20 cycles of freeze-thaw in the laboratory,and the change in their resilient modulus was measured.In the field-test sections constructed with the same materials as the base course,temperature,moisture,and field modulus(from fallingweight deflectometer tests)were monitored seasonally for nearly 8 years.From the temperatures in the base course layer,the number of freeze-thaw cycles experienced in the field was determined for each test section.Inferences were made relative to modulus change versus freeze-thaw cycles.Conclusions were drawn for long-term field performances of the recycled base(RAB)in comparison to natural aggregate.
基金financially sponsored by Qing Lan Project in Jiangsu Province of China(2023)Scientific Research Project of Taizhou Polytechnic College(TZYKY-22-4).
文摘The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.
文摘The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The two-way shape memory effect in quenched thin bar resulted from the preferential formation/extinction of martensite variant due to the internal quench stress, and the variant was formed at an angle of about 45 deg. with the tension direction ([001] of the βphase). Initial thermomechanical cycling under relatively low stress single variant stress-induced martensite was formed at an angle of 45 deg. with the tension and its morphology was a lath of parallel twins. More than one group of variants were formed after several training cycles and such variants also caused tilting of some thermally formed accommodated martensite. By overheating the trained sample containing stabilized multi-variants of stress-induced martensite, very coarse martensite structure with a strong asymmetry was produced, which caused the reverse two-way shape memory effect.
基金supported by the National Natural Science Foundation of China (Nos. 50762004 and 50864004)
文摘A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the active material were eliminated by high temperature calcining. Subsequently, Li2CO3, LiOH-H20 and LiAc-2H2O were added into the recycled powders to adjust the Li/Co molar ratio to 1.00. The new LiCoO2 was obtained by calcining the mixture at 850℃ for 12 h in air. The structure and morphology of the recycled powders and resulting samples were studied by XRD and SEM techniques, respectively. The layered structure of LiCoO2 synthesized by adding Li2CO3 is the best, and it is found to have the best characteristics as a cathode material in terms of charge-discharge capacity and cycling performance. The first discharge capacity is 160 mAh·g^-1 between 3.0-4.3 V. The discharge capacity after cycling for 50 times is still 145.2 mAh·g^-1.
文摘Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular components in the circulating water. The objective of the simulation is to determine the maximum allowable concentrations of ions and molecules as well as the choice of conditions for deposition or adsorption.First of all, our examinations decrease the concentration of copper ions and fatty acids in the circulating water. By pre-mixing water with the highest concentration of these ions, a reduction of copper ion and fatty acid concentrations in the recycled water occurs. The results do not only ensure the achievement of the maximum permitted concentration(MPC) of copper and iron, significantly reducing the amount of oxidized copper, they also make it possible to use the united sewage as current water for the flotation process. Mixing and adding filtrate of tailings, discharges of urban wastewater treatment and effluent of ash pit of thermal power stations(TPS) to recycled water causes an increase in the capacity of the enrichment plant by 15–17%.
文摘The mechanical properties of polyvinyl alcohol (PVA) films prepared by evaporating water from freeze/thaw cycled gel were investigated as a function of the number of freeze/thaw cycles. The maximum stress of the PVA film prepared by freeze/thaw cycling was larger than that prepared without the freeze/thaw cycle process. The largest maximum stress was 46.2 MPa for a film prepared with 10 freeze/thaw cycles, which was twice as large as that for a cast PVA film without freeze/thaw cycling (22.3 MPa). This is due to the formation of small crystallites during the freeze/thaw cycle process. Furthermore, when the film was annealed at 130°C, the maximum stress was as high as 181 MPa which was comparable to that for PVA films prepared using additives. The crystallinity is not the main factor that determines the maximum stress for either the non-annealed or annealed freeze/thaw cycled films, but the glass transition temperature is well correlated with the maximum stress, irrespective of the annealing process. This is due to the different molecular morphology;the non-annealed freeze/thaw cycled film consists of many small crystallites, but the annealed film consists of larger crystallites formed during the annealing process.
文摘Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.
基金National Natural Science Foundation of China,Grant/Award Numbers:22109023,22179022,22209027Industry-University-Research Joint Innovation Project of Fujian Province,Grant/Award Number:2021H6006+2 种基金FuXiaQuan National Independent Innovation Demonstration Zone Collaborative Innovation Platform,Grant/Award Number:2022-P-027Youth Innovation Fund of Fujian Province,Grant/Award Numbers:2021J05043,2022J05046Science and Technology。
文摘The indiscriminate utilization of nondegradable polyethylene terephthalate(PET)-based products has triggered serious environmental pollution that has to be resolved vigorously.A simple synthesis of N-doped carbon nanotubes from recycled PET(NCNTs_(r-PET))was developed by a nitric acid-assisted hydrothermal method.Experimental results and theoretical calculations show that the intrinsic defects in CNTs_(r-PET)would induce N-doping by NH_(3)generated from nitric acid during the hydrothermal process,thus producing the NCNTs_(r-PET).The life cycle assessment proves that the developed method for N-doped CNTs using r-PET as the carbon source is more environmentally friendly than the conventional chemical vapor deposition using acetylene as the carbon source.As a typical application,the NCNTs_(r-PET)delivered an impressive sodium storage capacity with an ultralong lifespan.This work not only provides a new route to upcycling waste plastics into valuable carbonaceous materials in an ecofriendly manner,but also reveals a basic understanding of the N-doping mechanism in carbonaceous materials.
文摘Generally,plastics pose a variety of environmental impacts due to their increased use and non-biodegradability.End-of-life treatment is a viable way of recovering energy from plastics while at the same time reducing the amount of plastics disposed of in landfills.This paper studies the environmental impact of Non-Recycled Plastics(NRP)-to-energy processes.Three waste treatment processes were considered for NRP:pyrolysis,waste-to-energy(WtE),and landfill.The environmental impact assessment results indicated that conversion technologies such as pyrolysis and WtE are preferred over landfill.The total energy consumed in the pyrolysis process was 24635.7 MJ/tonne.The conversion technologies have a lower environmental impact and produced net positive energy from NRP.The global warming potential shows that pyrolysis(3.91 kg eq.CO_(2))contributes the least to global warming than waste-to-energy(18.56 kg eq.CO_(2))and landfill(17.5 kg eq.CO_(2)).However,sensitivity analysis suggested that the inefficiencies of the current conversion technologies should be addressed.Between the two technologies studied,pyrolysis contributed less environmental burden,having a lower global warming potential,a higher efficiency in energy conversion,and less harmful emissions such as selenium and methane.
文摘Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions.
基金funded by the National Natural Science Foundation of China(grant Nos.22322803,22178059,22208054,and 22221005)Key Technologies Innovation and Industrialization Projects of Fujian Province(grant No.2022G031)Qingyuan Innovation Laboratory(grant Nos.00121002 and 00523005)
文摘The development of sustainable techniques to produce high-performance zeolite is essential to achieve green production in industry.Herein,we report an eco-friendly route to synthesizing hierarchical Beta zeolite from kaolinite and recycled mother liquor.The results reveal that the unutilized species(such as silicon species and Na+)in mother liquor stayed in a stable concentration during eleven recycled experiments.Moreover,the synthesized Beta zeolites still have comparable physicochemical properties and catalytic performance in the esterification of levulinic acid with ethanol over the initial zeolite although eleven recycled experiments.Life cycle assessment exhibits that the synthesis of Beta zeolite with recycled mother liquor can reduce global warming potential by 23%and resource depletion-water use by 36%compared to that without recycled mother liquor.This quantitatively demonstrates that the approach proposed in this work is really a sustainable one,extremely increasing the utilization efficiency of raw materials and decreasing the environmental burden.
基金supported by the National Natural Science Foundation of China(grant No.51308477)
文摘The present study attempts to investigate the effect of moisture conditioning on the in- direct tensile strength (ITS) of cold recycled mixture with bitumen emulsion. Firstly, samples were prepared using a Superpave gyratory compactor. They were hence condi- tioned using moisture induced sensitivity tester (MIST) device. Factorial design was carried out considering four factors each at two different levels. These factors were specimen thickness, air voids content, pressure and number of cycles. In the MIST device, samples are cyclically subjected to water pressure through the sample pores. The MIST conditioned samples were tested for indirect tensile strength. The analysis of two-level full-factorial designed experiments revealed that all four factors have a negative effect on tensile strength of cold recycled mixture with bitumen emulsion. Specimen thickness was the most significant factor affecting the tensile strength followed by air voids content. In two- factor interaction, specimen thickness-number of cycles, air voids content-pressure, and pressure-number of cycles were significant. The most significant three-factor interaction was specimen thickness-pressure-number of cycles. The results from the study suggest that in measuring tensile strength, the appropriate specimen thickness and air voids content should be selected to quantify the representative tensile strength for in-situ conditions.