Ni-rich cathode material is one of the most promising materials for Li-ion batteries in electric vehicles.However,fading capacity,poor cyclic stability and high p H value are still major challenges,which suppress its ...Ni-rich cathode material is one of the most promising materials for Li-ion batteries in electric vehicles.However,fading capacity,poor cyclic stability and high p H value are still major challenges,which suppress its practical application.In this study,spherical LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)powders with 0.4 wt%TiO_(2)coating layer were prepared by impregnation-hydrolysis method.Scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM)and X-ray diffraction(XRD)results show that TiO_(2)is uniformly coated on the surface of LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)particle and slightly embedded into LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)particles.After 100 cycles at 2.0 C,0.4 wt%TiO_(2)-coated LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)electrode delivers much higher discharge capacity retention(77.0%)than the pristine LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)electrode(63.3%).The excellent cycling performance of 0.4 wt%Ti O_(2)-coated LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)electrode at a high discharge ratio is due to a TiO_(2)coating layer which can effectively reduce the direct contact between cathode material and electrolyte,suppress the oxidation of electrolyte,improve electrical conductivity of the electrode and increase the stability of the structure.展开更多
The isothermal desorption kinetics of the 1.1MgH2-2LiNH2-0.1LiBH4 system were improved by addition of LaNi4.5Mn0.5 alloy. The hydrogen desorption peak temperature of the sample containing LaNi4.5Mn0.5 reduced by appro...The isothermal desorption kinetics of the 1.1MgH2-2LiNH2-0.1LiBH4 system were improved by addition of LaNi4.5Mn0.5 alloy. The hydrogen desorption peak temperature of the sample containing LaNi4.5Mn0.5 reduced by approximately 5 K and the activation energy reduced by 9%. The results of isothermal dehydrogenation kinetics analysis implied that the isothermal desorption process at initial stage was controlled by the phase boundary mechanism. Moreover, the cycle performance of the materials was extended. The growth and agglomeration of the sample particles caused the deterioration of kinetics during de-/hydrogenation cycles, and then resulted in an incomplete desorption/absorption reaction which were responsible for the capacity fading. The cracking and pulverization of LaNi4.5Mn0.5 alloy had an obvious effect on preventing the composites aggregating, and the fine alloy particles could enhance the catalytic effect of the alloy, thus effectively offsetting part of the deterioration of kinetics caused by particles growth.展开更多
Enhancing the efficiency of Rankine cycles is crucial for improving the performance of thermal power plants,as it directly impacts operational costs and emissions in light of energy transition goals.This study sets it...Enhancing the efficiency of Rankine cycles is crucial for improving the performance of thermal power plants,as it directly impacts operational costs and emissions in light of energy transition goals.This study sets itself apart from existing research by applying a novel optimization technique to a basic ideal Rankine cycle,focusing on a specific power plant that has not been previously analyzed.Currently,this cycle operates at 41%efficiency and a steam quality of 76%,constrained by fixed operational parameters.The primary objectives are to increase thermal efficiency beyond 46%and raise steam quality above 85%,while adhering to operational limits:a boiler pressure not exceeding 15 MPa,condenser pressure not dropping below 10 kPa,and turbine temperature not surpassing 500℃.This study utilizes numerical simulations to model the effects of varying boiler pressure(Pb)and condenser pressure(Pc)within the ranges of 12MPa<Pb<15 MPa and 5 kPa<Pc<10 kPa.By systematically adjusting these parameters,the proposed aimto identify optimal conditions that maximize efficiency and performance within specified constraints.The findings will provide valuable insights for power plant operators seeking to optimize performance under real-world conditions,contributing to more efficient and sustainable power generation.展开更多
Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(N...Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(NLOS)deposition,giving great potential application in aero-engine.However,due to serious service environment of aero-engine,particle erosion performance is a weakness for PS-PVD 7YSZ TBCs.As a solution,an Al-modification approach was proposed in this investigation.Through in-situ reaction of Al and ZrO2,anα-Al2O3 overlay can be formed on the surface of 7YSZ columnar coating.The results demonstrate that this approach can improve particle erosion resistance since hardness improvement of Al-modified TBCs.Meanwhile,as another important performance of thermal cycle,it has a better optimization with 350-cycle water-quenching,compared with the as-sprayed TBCs.展开更多
The effects of cycle potential window on electrochemical behaviors,structural characteristics,and surface changes in Li[Ni_(0.133)Li_(0.2)Co_(0.133)Mn_(0.533)]O_(2)(or 0.5 Li_(2)MnO_(3)·0.5 Li(Co_(0.333)Ni_(0.333...The effects of cycle potential window on electrochemical behaviors,structural characteristics,and surface changes in Li[Ni_(0.133)Li_(0.2)Co_(0.133)Mn_(0.533)]O_(2)(or 0.5 Li_(2)MnO_(3)·0.5 Li(Co_(0.333)Ni_(0.333)Mn_(0.333))O2)in lithium-ion battery were investigated.Two flat charge potential plateaus,~3.9 and~4.5 V,are observed in the initial charge curves of the cells.Sharp changes in specific capacity and columbic efficiency are presented at~4.5 V during the first cycle.XRD specific peaks show an obvious shift with the increase in charge cutoff potential.When the charge cutoff potential is above4.4 V,the cycle performance decreases with the increase in charge cutoff potentials.A film with the composition of C and O elements is observed on the cycled composite particle.展开更多
A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the...A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the active material were eliminated by high temperature calcining. Subsequently, Li2CO3, LiOH-H20 and LiAc-2H2O were added into the recycled powders to adjust the Li/Co molar ratio to 1.00. The new LiCoO2 was obtained by calcining the mixture at 850℃ for 12 h in air. The structure and morphology of the recycled powders and resulting samples were studied by XRD and SEM techniques, respectively. The layered structure of LiCoO2 synthesized by adding Li2CO3 is the best, and it is found to have the best characteristics as a cathode material in terms of charge-discharge capacity and cycling performance. The first discharge capacity is 160 mAh·g^-1 between 3.0-4.3 V. The discharge capacity after cycling for 50 times is still 145.2 mAh·g^-1.展开更多
Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galva...Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.展开更多
LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on th...LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.展开更多
Na^+ doped sample Li0.95Na0.05FePO4 was prepared through solid state method. Structure characterization shows Na^+ is successfully introduced into the LiFePO4 matrix. Scanning electron microscopy shows the particle ...Na^+ doped sample Li0.95Na0.05FePO4 was prepared through solid state method. Structure characterization shows Na^+ is successfully introduced into the LiFePO4 matrix. Scanning electron microscopy shows the particle size mainly ranges in 1-3 μm. X-ray diffraction Rietveld refinement demonstrates lattice distortion with an increased cell volume. As one cathode material, it has a discharge capacity of 150 mAh/g at 0.1 C rate. The material exhibits a capacity of 109 and 107 mAh/g at 5 and 7.5 C respectively. When cycled at 1 and 5 C, the material retains 84% (after 1000 cycles) and 86% (after 350 cycles) of the initial discharge capacity respectively indicating excellent structure stability and cycling performance. Na^+ doping enhances the electrochemical activity especially the cycle performance effectively.展开更多
Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(...Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.展开更多
To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imid...To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion.展开更多
This work focused on the zinc powder coated with Y(OH)3 microparticles by means of ultrasonic immersion for performance improvement of zinc electrodes in alkaline battery systems.Scanning electron microscopy and other...This work focused on the zinc powder coated with Y(OH)3 microparticles by means of ultrasonic immersion for performance improvement of zinc electrodes in alkaline battery systems.Scanning electron microscopy and other characterization techniques were applied to examine the influence of the ultrasonic power on the sonochemical growth of Y(OH)3 microparticles in direct contact with zinc powder.Electrochemical properties of zinc electrodes containing Y(OH)3 microparticles were discussed through the measurement...展开更多
Due to its high operational voltage and energy density,P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) has become a leading cathode material for sodium-ion batteries(SIBs),which is an ideal option for large-scale energy storag...Due to its high operational voltage and energy density,P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) has become a leading cathode material for sodium-ion batteries(SIBs),which is an ideal option for large-scale energy storage.However,the practical application of P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) is limited by the capacity constraints and unwanted phase transitions,presenting significant challenges to the widespread application of SIBs.To address these challenges and optimize the electrochemical properties of the P2 phase cathode material,this study proposes a Cu and Zn co-doped strategy to improve the electrochemical performance.The incorporation of Cu/Zn can stabilize the P2-phase structure against P2-O2 phase transitions,thus enhancing its electrochemical properties.The as-obtained P2-type Na0.67[Ni_(0.3)Mn_(0.58)Cu_(0.09)Zn_(0.03)]O_(2) cathode material shows an impressive cycling stability,maintaining 80%capacity retention after 1000 cycles at 2 C.The cyclic voltammetry(CV)tests show that the Cu^(2+)/Cu^(3+)redox reaction is also involved in charge compensation during the charge/discharge process.展开更多
To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic an...To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic and lithium ion transport rates and thus an improved high-rate performance. However, our previous synthesized LiFePO4 nanorods only exhibited low high-rate and slightly unstable cycle performance. Possible reasons are the poor crystallization and Fe2+ oxidation of LiFePO4 nanorods prepared by hydrothermal method. In this paper, LiFePO4 nanorods were simply dealt with at 700 ℃ for 4 h under the protection of Ar and H2 mixture gas. The electrochemical properties of LiFePO4/Li cells were investigated by galvanostatic test and cyclic voltammetry(CV). The experimental results indicated that the annealed LiFePO4 nanorods delivered an excellent cycling stability and obviously improved capacity of 150 mA·h·g-1 at 1C, and even 122 mA·h·g-1 at 5C.展开更多
The lithium-ion capacitor is a promising energy storage system with a higher energy density than traditional supercapacitors.However,its cycling and rate performances,which depend on the electrochemical properties of ...The lithium-ion capacitor is a promising energy storage system with a higher energy density than traditional supercapacitors.However,its cycling and rate performances,which depend on the electrochemical properties of the anode,are still required to be improved.In this work,soft carbon anodes reinforced using carbon-Si composites of various compositions were fabricated to investigate their beneficial influences on the performance of lithium-ion capacitors.The results showed that the specific capacities of the anodes increased significantly by 16.6 mAh g^(-1) with 1.0 wt% carbon-Si composite,while the initial discharge efficiency barely changed.The specific capacity of the anode with a 10.0 wt% carbon-Si composite reached 513.1 mAh g^(-1),and the initial discharge efficiency was 83.79%.Furthermore,the anodes with 7.5 wt% or lower amounts of carbon-Si composite demonstrated reduced charge transfer resistances,which caused an improvement in the rate performance of the lithium-ion capacitors.Moreover,the use of the optimized amount(7.5 wt%) of carbon-Si composite in the anode could significantly improve the cycling performance of the lithium-ion capacitor by compensating the consumption of active lithium.The capacity retention of the lithium-ion capacitor reached 95.14% at 20 C after 10,000 cycles,while the anode potential remained below 0.412 V,which is much lower than that of a soft carbon anode.展开更多
All-solid-state Li-Se battery shows great potential as a candidate for next-generation energy storage devices due to its high energy density and safety.However,the low ionic conductivity of the solid electrolytes and ...All-solid-state Li-Se battery shows great potential as a candidate for next-generation energy storage devices due to its high energy density and safety.However,the low ionic conductivity of the solid electrolytes and large volume changes of Se active materials are two of the major issues that limit its applications.Herein,a simple solid-state reaction method is applied to synthesize chlorine-rich argyrodite Li_(5.5)PS_(4.5)CI_(1.5)electrolyte with high conductivity of 6.25 mS·cm^(-1)at room temperature.Carbon nanotube(CNT)is introduced as the host for Se to obtain Se/CNT composite with both enhanced electronic conductivity and lower volume expansion during the electrochemical reaction process.All-solid-state Li-Se battery using Li_(5.5)PS_(4.5)CI_(1.5)as solid electrolyte combined with Se/CNT cathode and Li-In anode shows a discharge capacity of 866 mAh·g-1for the 2nd cycle under0.433 mA·cm-2at room temperature.Moreover,the assembled battery delivers a high discharge capacity of1026 mAh·g^(-1)for the 2nd cycle when cycled at the same current density at 60℃and maintains a discharge capacity of 380 mAh·g^(-1)after 150 cycles.Owing to the high Li-ion conductivity of Li_(5.5)PS_(4.5)CI_(1.5)electrolyte,the assembled battery displays a high discharge capacity of 344 mAh·g^(-1)under 0.113 mA·cm^(-2)at-20℃C and remains 66.1%after200 cycles.In addition,this all-solid-state Li-Se battery shows ultralong cycling performances up to 1000 cycles under 0.433 mA·cm^(-2)at-20℃.This work offers the design clue to fabricate the all-solid-state Li-Se battery workable at different operating temperatures with an ultralong cycling life.展开更多
Currently,developing supercapacitors with robust cycle stability and suitability for wide-temperature-range operations is still a huge challenge.In the present work,few-layer hexagonal boron nitride nanosheets(h-BNNSs...Currently,developing supercapacitors with robust cycle stability and suitability for wide-temperature-range operations is still a huge challenge.In the present work,few-layer hexagonal boron nitride nanosheets(h-BNNSs)with a thickness of 2−4 atomic layers were fabricated via vacuum freeze-drying and nitridation.Then,the h-BNNSs/reduced graphene oxide(rGO)composite were further prepared using a hydrothermal method.Due to the combination of two two-dimensional(2D)van der Waals-bonded materials,the as-prepared h-BNNSs/rGO electrode exhibited robustness to wide-temperature-range operations from−10 to 50℃.When the electrodes worked in a neutral aqueous electrolyte(1 M Na2SO4),they showed a great stable cycling performance with almost 107%reservation of the initial capacitance at 0℃ and 111% at 50℃ for 5000 charge−discharge cycles.展开更多
Silicon is being investigated extensively as an anodic material for next-generation lithium ion batteries for portable energy storage and electric vehicles.However,the large changes in volume during cycling lead to th...Silicon is being investigated extensively as an anodic material for next-generation lithium ion batteries for portable energy storage and electric vehicles.However,the large changes in volume during cycling lead to the breakdown of the conductive network in Si anodes and the formation of an unstable solid-electrolyte interface,resulting in capacity fading.Here,we demonstrate nanoparticles with a Si@Mn22.6Si5.4C4@C double-shell structure and the formation of self-organized Si-Mn-C nanocomposite anodes during the lithiation/delithiation process.The anode consists of amorphous Si particles less than 10 nm in diameter and separated by an interconnected conductive/buffer network,which exhibits excellent charge transfer kinetics and charge/discharge performances.A stable specific capacity of 1100 mAh·g-1 at 100 mA·g-1 and a coulombic efficiency of 99.2%after 30 cycles are achieved.Additionally,a rate capacity of 343 mAh·g-1 and a coulombic efficiency of 99.4%at 12000 mA·g-1 are also attainable.Owing to its simplicity and applicability,this strategy for improving electrode performance paves a way for the development of high-performance Si-based anodic materials for lithium ion batteries.展开更多
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrol...All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI-and FSI-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm-2,while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g-1,with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.展开更多
The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS...The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS)as the electrolyte additive is proposed to facilitate the generation of stable CEI on NCM811 cathode surface and eliminate H_(2)O and HF in the electrolyte at the same time,which boosts the cycling performance of Li||NCM811 battery up to 1000 or 500 cycles with 4.5 V cut-off voltage at 25 or 60℃.展开更多
基金the National Natural Science Foundation of China(No.51701173)。
文摘Ni-rich cathode material is one of the most promising materials for Li-ion batteries in electric vehicles.However,fading capacity,poor cyclic stability and high p H value are still major challenges,which suppress its practical application.In this study,spherical LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)powders with 0.4 wt%TiO_(2)coating layer were prepared by impregnation-hydrolysis method.Scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM)and X-ray diffraction(XRD)results show that TiO_(2)is uniformly coated on the surface of LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)particle and slightly embedded into LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)particles.After 100 cycles at 2.0 C,0.4 wt%TiO_(2)-coated LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)electrode delivers much higher discharge capacity retention(77.0%)than the pristine LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)electrode(63.3%).The excellent cycling performance of 0.4 wt%Ti O_(2)-coated LiNi_(0.)9Co_(0.08)Al_(0.02)O_(2)electrode at a high discharge ratio is due to a TiO_(2)coating layer which can effectively reduce the direct contact between cathode material and electrolyte,suppress the oxidation of electrolyte,improve electrical conductivity of the electrode and increase the stability of the structure.
基金Project supported by High-Tech Research and Development Program of China(2012AA051503)
文摘The isothermal desorption kinetics of the 1.1MgH2-2LiNH2-0.1LiBH4 system were improved by addition of LaNi4.5Mn0.5 alloy. The hydrogen desorption peak temperature of the sample containing LaNi4.5Mn0.5 reduced by approximately 5 K and the activation energy reduced by 9%. The results of isothermal dehydrogenation kinetics analysis implied that the isothermal desorption process at initial stage was controlled by the phase boundary mechanism. Moreover, the cycle performance of the materials was extended. The growth and agglomeration of the sample particles caused the deterioration of kinetics during de-/hydrogenation cycles, and then resulted in an incomplete desorption/absorption reaction which were responsible for the capacity fading. The cracking and pulverization of LaNi4.5Mn0.5 alloy had an obvious effect on preventing the composites aggregating, and the fine alloy particles could enhance the catalytic effect of the alloy, thus effectively offsetting part of the deterioration of kinetics caused by particles growth.
文摘Enhancing the efficiency of Rankine cycles is crucial for improving the performance of thermal power plants,as it directly impacts operational costs and emissions in light of energy transition goals.This study sets itself apart from existing research by applying a novel optimization technique to a basic ideal Rankine cycle,focusing on a specific power plant that has not been previously analyzed.Currently,this cycle operates at 41%efficiency and a steam quality of 76%,constrained by fixed operational parameters.The primary objectives are to increase thermal efficiency beyond 46%and raise steam quality above 85%,while adhering to operational limits:a boiler pressure not exceeding 15 MPa,condenser pressure not dropping below 10 kPa,and turbine temperature not surpassing 500℃.This study utilizes numerical simulations to model the effects of varying boiler pressure(Pb)and condenser pressure(Pc)within the ranges of 12MPa<Pb<15 MPa and 5 kPa<Pc<10 kPa.By systematically adjusting these parameters,the proposed aimto identify optimal conditions that maximize efficiency and performance within specified constraints.The findings will provide valuable insights for power plant operators seeking to optimize performance under real-world conditions,contributing to more efficient and sustainable power generation.
基金We would like to acknowledge the financial support from the National Natural Science Foundation of China(52172067)Guangdong Province Outstanding Youth Foundation(2021B1515020038)+1 种基金Guangdong Special Support Program(2019BT02C629)Guangdong Academy of Sciences Program(2020GDASYL-20200104030).
文摘Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(NLOS)deposition,giving great potential application in aero-engine.However,due to serious service environment of aero-engine,particle erosion performance is a weakness for PS-PVD 7YSZ TBCs.As a solution,an Al-modification approach was proposed in this investigation.Through in-situ reaction of Al and ZrO2,anα-Al2O3 overlay can be formed on the surface of 7YSZ columnar coating.The results demonstrate that this approach can improve particle erosion resistance since hardness improvement of Al-modified TBCs.Meanwhile,as another important performance of thermal cycle,it has a better optimization with 350-cycle water-quenching,compared with the as-sprayed TBCs.
基金financially supported by the HiTech Research and Development Program of China (No. 2011AA11A254)
文摘The effects of cycle potential window on electrochemical behaviors,structural characteristics,and surface changes in Li[Ni_(0.133)Li_(0.2)Co_(0.133)Mn_(0.533)]O_(2)(or 0.5 Li_(2)MnO_(3)·0.5 Li(Co_(0.333)Ni_(0.333)Mn_(0.333))O2)in lithium-ion battery were investigated.Two flat charge potential plateaus,~3.9 and~4.5 V,are observed in the initial charge curves of the cells.Sharp changes in specific capacity and columbic efficiency are presented at~4.5 V during the first cycle.XRD specific peaks show an obvious shift with the increase in charge cutoff potential.When the charge cutoff potential is above4.4 V,the cycle performance decreases with the increase in charge cutoff potentials.A film with the composition of C and O elements is observed on the cycled composite particle.
基金supported by the National Natural Science Foundation of China (Nos. 50762004 and 50864004)
文摘A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the active material were eliminated by high temperature calcining. Subsequently, Li2CO3, LiOH-H20 and LiAc-2H2O were added into the recycled powders to adjust the Li/Co molar ratio to 1.00. The new LiCoO2 was obtained by calcining the mixture at 850℃ for 12 h in air. The structure and morphology of the recycled powders and resulting samples were studied by XRD and SEM techniques, respectively. The layered structure of LiCoO2 synthesized by adding Li2CO3 is the best, and it is found to have the best characteristics as a cathode material in terms of charge-discharge capacity and cycling performance. The first discharge capacity is 160 mAh·g^-1 between 3.0-4.3 V. The discharge capacity after cycling for 50 times is still 145.2 mAh·g^-1.
基金Project(2007BAE12B01)supported by the National Key Technology Research and Development Program of ChinaProject(20803095)supported by the National Natural Science Foundation of China
文摘Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.
基金V. ACKNOWLEDGMENTS The work was supported by the Natural Science Foundation of Anhui province (No.90414178) and USTC-NSRL Association funding (No.KY2060030010).
文摘Na^+ doped sample Li0.95Na0.05FePO4 was prepared through solid state method. Structure characterization shows Na^+ is successfully introduced into the LiFePO4 matrix. Scanning electron microscopy shows the particle size mainly ranges in 1-3 μm. X-ray diffraction Rietveld refinement demonstrates lattice distortion with an increased cell volume. As one cathode material, it has a discharge capacity of 150 mAh/g at 0.1 C rate. The material exhibits a capacity of 109 and 107 mAh/g at 5 and 7.5 C respectively. When cycled at 1 and 5 C, the material retains 84% (after 1000 cycles) and 86% (after 350 cycles) of the initial discharge capacity respectively indicating excellent structure stability and cycling performance. Na^+ doping enhances the electrochemical activity especially the cycle performance effectively.
基金the National Natural Science Foundation of China(52103093)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2021QNRC001)+2 种基金the Jiangxi Provincial Natural Science Foundation(20212BAB214048)Science and Technology Support Project of Shangrao(2020L009,2021J006)Science and Technological Project of Education Department of Jiangxi(GJJ211704)for funding their contributions to this paper。
文摘Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.
基金financially supported by the National Key Research and Development Program of China (2017YFA0208200)the National Natural Science Foundation of China (52102100,22022505 and 21872069)+4 种基金the Natural Science Foundation of Jiangsu Province (BK20181469)Guangdong Basic and Applied Basic Research Foundation (2020A1515110035)the Fundamental Research Funds for the Central Universities (0205-14380266,0205-14380272)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (BK20220008)the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District。
文摘To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion.
基金supported by the Innovation Foundation of BUAA for Ph. D Graduates Provided by Beihang University in China
文摘This work focused on the zinc powder coated with Y(OH)3 microparticles by means of ultrasonic immersion for performance improvement of zinc electrodes in alkaline battery systems.Scanning electron microscopy and other characterization techniques were applied to examine the influence of the ultrasonic power on the sonochemical growth of Y(OH)3 microparticles in direct contact with zinc powder.Electrochemical properties of zinc electrodes containing Y(OH)3 microparticles were discussed through the measurement...
基金supported by the National Natural Science Foundation of China(Nos.22179077,51774251,21908142)Shanghai Science and Technology Commission’s“2020 Science and Technology In-novation Action Plan”(No.20511104003)Natural Science Foundation in Shanghai(No.21ZR1424200)。
文摘Due to its high operational voltage and energy density,P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) has become a leading cathode material for sodium-ion batteries(SIBs),which is an ideal option for large-scale energy storage.However,the practical application of P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) is limited by the capacity constraints and unwanted phase transitions,presenting significant challenges to the widespread application of SIBs.To address these challenges and optimize the electrochemical properties of the P2 phase cathode material,this study proposes a Cu and Zn co-doped strategy to improve the electrochemical performance.The incorporation of Cu/Zn can stabilize the P2-phase structure against P2-O2 phase transitions,thus enhancing its electrochemical properties.The as-obtained P2-type Na0.67[Ni_(0.3)Mn_(0.58)Cu_(0.09)Zn_(0.03)]O_(2) cathode material shows an impressive cycling stability,maintaining 80%capacity retention after 1000 cycles at 2 C.The cyclic voltammetry(CV)tests show that the Cu^(2+)/Cu^(3+)redox reaction is also involved in charge compensation during the charge/discharge process.
基金Funded by the National Natural Science Foundation of China(51208396 and 21277017)the Fundamental Research Funds for the Central Universities(2013-Ia-36 and 2013-Ia-39)the Selfdetermined and Innovative Research Funds of WUT(136814016)
文摘To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic and lithium ion transport rates and thus an improved high-rate performance. However, our previous synthesized LiFePO4 nanorods only exhibited low high-rate and slightly unstable cycle performance. Possible reasons are the poor crystallization and Fe2+ oxidation of LiFePO4 nanorods prepared by hydrothermal method. In this paper, LiFePO4 nanorods were simply dealt with at 700 ℃ for 4 h under the protection of Ar and H2 mixture gas. The electrochemical properties of LiFePO4/Li cells were investigated by galvanostatic test and cyclic voltammetry(CV). The experimental results indicated that the annealed LiFePO4 nanorods delivered an excellent cycling stability and obviously improved capacity of 150 mA·h·g-1 at 1C, and even 122 mA·h·g-1 at 5C.
基金financially supported by the National Natural Science Foundation of China (No.51721005)the Beijing Municipal Science and Technology Commission (No.Z171100000917007)
文摘The lithium-ion capacitor is a promising energy storage system with a higher energy density than traditional supercapacitors.However,its cycling and rate performances,which depend on the electrochemical properties of the anode,are still required to be improved.In this work,soft carbon anodes reinforced using carbon-Si composites of various compositions were fabricated to investigate their beneficial influences on the performance of lithium-ion capacitors.The results showed that the specific capacities of the anodes increased significantly by 16.6 mAh g^(-1) with 1.0 wt% carbon-Si composite,while the initial discharge efficiency barely changed.The specific capacity of the anode with a 10.0 wt% carbon-Si composite reached 513.1 mAh g^(-1),and the initial discharge efficiency was 83.79%.Furthermore,the anodes with 7.5 wt% or lower amounts of carbon-Si composite demonstrated reduced charge transfer resistances,which caused an improvement in the rate performance of the lithium-ion capacitors.Moreover,the use of the optimized amount(7.5 wt%) of carbon-Si composite in the anode could significantly improve the cycling performance of the lithium-ion capacitor by compensating the consumption of active lithium.The capacity retention of the lithium-ion capacitor reached 95.14% at 20 C after 10,000 cycles,while the anode potential remained below 0.412 V,which is much lower than that of a soft carbon anode.
基金financially supported by the National Key Research and Development Program (No. 2021YFB2400300)the National Natural Science Foundation of China (No.52177214)the Certificate of China Post-doctoral Science Foundation Grant (No.2019M652634)
文摘All-solid-state Li-Se battery shows great potential as a candidate for next-generation energy storage devices due to its high energy density and safety.However,the low ionic conductivity of the solid electrolytes and large volume changes of Se active materials are two of the major issues that limit its applications.Herein,a simple solid-state reaction method is applied to synthesize chlorine-rich argyrodite Li_(5.5)PS_(4.5)CI_(1.5)electrolyte with high conductivity of 6.25 mS·cm^(-1)at room temperature.Carbon nanotube(CNT)is introduced as the host for Se to obtain Se/CNT composite with both enhanced electronic conductivity and lower volume expansion during the electrochemical reaction process.All-solid-state Li-Se battery using Li_(5.5)PS_(4.5)CI_(1.5)as solid electrolyte combined with Se/CNT cathode and Li-In anode shows a discharge capacity of 866 mAh·g-1for the 2nd cycle under0.433 mA·cm-2at room temperature.Moreover,the assembled battery delivers a high discharge capacity of1026 mAh·g^(-1)for the 2nd cycle when cycled at the same current density at 60℃and maintains a discharge capacity of 380 mAh·g^(-1)after 150 cycles.Owing to the high Li-ion conductivity of Li_(5.5)PS_(4.5)CI_(1.5)electrolyte,the assembled battery displays a high discharge capacity of 344 mAh·g^(-1)under 0.113 mA·cm^(-2)at-20℃C and remains 66.1%after200 cycles.In addition,this all-solid-state Li-Se battery shows ultralong cycling performances up to 1000 cycles under 0.433 mA·cm^(-2)at-20℃.This work offers the design clue to fabricate the all-solid-state Li-Se battery workable at different operating temperatures with an ultralong cycling life.
基金financially supported by the National Natural Science Foundation for Excellent Young Scholars of China (No. 51522402)the National Postdoctoral Program for Innovative Talents of China (No. BX20180034)+2 种基金the National Natural Science Foundation of China (No. 51902020)the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-045A1)the China Postdoctoral Science Foundation (No. 2018M641192)
文摘Currently,developing supercapacitors with robust cycle stability and suitability for wide-temperature-range operations is still a huge challenge.In the present work,few-layer hexagonal boron nitride nanosheets(h-BNNSs)with a thickness of 2−4 atomic layers were fabricated via vacuum freeze-drying and nitridation.Then,the h-BNNSs/reduced graphene oxide(rGO)composite were further prepared using a hydrothermal method.Due to the combination of two two-dimensional(2D)van der Waals-bonded materials,the as-prepared h-BNNSs/rGO electrode exhibited robustness to wide-temperature-range operations from−10 to 50℃.When the electrodes worked in a neutral aqueous electrolyte(1 M Na2SO4),they showed a great stable cycling performance with almost 107%reservation of the initial capacitance at 0℃ and 111% at 50℃ for 5000 charge−discharge cycles.
基金supported by the Major Program of Beijing Municipal Natural Science Foundation(No.2110001)the National Natural Science Foundation of China(No.11179001)the National High Technology Research and Development Program(No.2012AA052201)
文摘Silicon is being investigated extensively as an anodic material for next-generation lithium ion batteries for portable energy storage and electric vehicles.However,the large changes in volume during cycling lead to the breakdown of the conductive network in Si anodes and the formation of an unstable solid-electrolyte interface,resulting in capacity fading.Here,we demonstrate nanoparticles with a Si@Mn22.6Si5.4C4@C double-shell structure and the formation of self-organized Si-Mn-C nanocomposite anodes during the lithiation/delithiation process.The anode consists of amorphous Si particles less than 10 nm in diameter and separated by an interconnected conductive/buffer network,which exhibits excellent charge transfer kinetics and charge/discharge performances.A stable specific capacity of 1100 mAh·g-1 at 100 mA·g-1 and a coulombic efficiency of 99.2%after 30 cycles are achieved.Additionally,a rate capacity of 343 mAh·g-1 and a coulombic efficiency of 99.4%at 12000 mA·g-1 are also attainable.Owing to its simplicity and applicability,this strategy for improving electrode performance paves a way for the development of high-performance Si-based anodic materials for lithium ion batteries.
基金financially supported by the National Natural Science Foundation of China(No.21673051)the Department of Science and Technology of Guangdong Province,China(No.2019A050510043)。
文摘All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI-and FSI-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm-2,while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g-1,with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.
基金the support from the National Natural Science Foundation of China(Grant No.51971090 and U21A20311)。
文摘The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS)as the electrolyte additive is proposed to facilitate the generation of stable CEI on NCM811 cathode surface and eliminate H_(2)O and HF in the electrolyte at the same time,which boosts the cycling performance of Li||NCM811 battery up to 1000 or 500 cycles with 4.5 V cut-off voltage at 25 or 60℃.