期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
INFLUENCE OF COLD NITROGEN GAS AND OIL MIST IN MACHINING NICKEL-BASE K424 ALLOY WITH CERAMIC CUTTING TOOLS 被引量:1
1
作者 苏宇 何宁 +3 位作者 李亮 徐胜 肖茂华 邱宝贵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期118-124,共7页
The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling sys... The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling system is developed and used to lower the temperature of the compressed nitrogen gas. Experiments are performed in three different cooling/lubrication modes, i.e. the dry cutting, the cold nitrogen gas (CNG), and the cold nitrogen gas and oil mist (CNGOM). Experimental results show that the depth-of-cut notching severely limits the tool life in all the cooling/lubrication modes. Compared with the dry cutting, the use of CNG and CNGOMcan yield higher wear rate of depth-of-cut notching and worse surface finish. 展开更多
关键词 cold nitrogen gas oil mist ceramic cutting tool tool wear surface finish
在线阅读 下载PDF
Precise measurement of geometric and physical quantities in cutting tools inspection and condition monitoring: A review 被引量:3
2
作者 Wenqi WANG Wei LIU +3 位作者 Yang ZHANG Yang LIU Peidong ZHANG Zhenyuan JIA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期23-53,共31页
As one of the most important terminals in machining, cutting tools have been widely used for components manufacturing in aerospace and other industries. The quality of these components and processing efficiency are cl... As one of the most important terminals in machining, cutting tools have been widely used for components manufacturing in aerospace and other industries. The quality of these components and processing efficiency are closely linked to the performance of cutting tools. Therefore, it is essential and critical to inspect the cutting tools and monitor the condition during the stage of manufacturing and machining. This review aims to discuss and summarize the key problems, methods,and techniques from the perspective of the tool geometric and the physical quantities measurement,including machine vision, physical sensors and data processing. It is worth mentioning that we focus on the topic of precision measurement methods and discuss universal solutions by identifying the common characteristics of the measured quantities. Eventually, the challenges and future trends for the development of in-depth research and practical applications are concluded. The research and application of precise measurement techniques for geometric and physical quantities will better promote the development of intelligent manufacturing. 展开更多
关键词 cutting tools Mechanical measurement Machine vision Physical sensors Tool condition monitoring
原文传递
Progress on Bionic Textured Cutting Tools:A Review and Prospects 被引量:1
3
作者 Hong Wei Guangjun Chen +2 位作者 Zhuang Chen Zhiwei Yu Jiashuai Huang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期19-55,共37页
Cutting tools are known as the“productivity”of the manufacturing industry,which affects the production efficiency and quality of the workpiece,and has become the focus of research and attention in academia and indus... Cutting tools are known as the“productivity”of the manufacturing industry,which affects the production efficiency and quality of the workpiece,and has become the focus of research and attention in academia and industry.However,traditional cutting tools often suffer from adhesion or wear during the cutting process,which considerably reduces the cutting efficiency and service life of the tools,and makes it difficult to meet current production requirements.To solve the above problems,scholars have introduced bionics into the tool’s design,applying the microscopic structure of the biological surface to the tool surface to alleviate the tool’s failure.This paper mainly summarizes the research progress of bionic textured cutting tools.Firstly,categorize whether the bionic texture design is inspired by a single organism or multiple organisms.Secondly,it is discussed that the non-smooth surface of the biological surface has five characteristics:hydrophilic lubricity,wear resistance,drag reduction and hydrophobicity,anti-adhesion,and arrangement,and the non-smooth structure of these different characteristics are applied to the surface of the tool is designed with bionic texture.Furtherly,the cutting performance of bionic textured cutting tools is discussed.The anti-friction and wear-resisting mechanism of bionic textured cutting tools is analyzed.Finally,some pending problems and perspectives have been proposed to provide new inspirations for the design of bionic textured cutting tools. 展开更多
关键词 Bionic textured cutting tools Biological microstructure characteristics cutting performance Anti-friction and wear-resisting mechanism
在线阅读 下载PDF
Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives 被引量:8
4
作者 Kai Cheng Zhi-Chao Niu +2 位作者 Robin C.Wang Richard Rakowski Richard Bateman 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1162-1176,共15页
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative des... Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultra- precision and micro manufacturing purposes. Implemen- tation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation tech- niques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algo- rithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in- process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) applica- tion exemplars on adaptive smart machining. 展开更多
关键词 Smart cutting tool Smart machining Fast toolservo (FFS) Precision machining Micro manufacturing Smart tooling
在线阅读 下载PDF
Wear Patterns and Mechanisms of Cutting Tools in High Speed Face Milling
5
作者 LIU Zhan-qiang, AI Xing, ZHANG Hui, WANG Zun-tong, WAN Yi (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期58-,共1页
High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due... High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes. 展开更多
关键词 cutting tool WEAR high speed machining face milling
在线阅读 下载PDF
Prediction of Wearing of Cutting Tools Using Real Time Machining Parameters and Temperature Using Rayleigh-Ham Method
6
作者 Jean Nyatte Nyatte Fabrice Alban Epee +3 位作者 Wilba Christophe Kikmo Samuel Batambock Claude Valéry Ngayihi Abbe Robert Nzengwa 《Modern Mechanical Engineering》 2023年第2期35-54,共20页
Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determin... Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining. 展开更多
关键词 MACHINING cutting Temperature Modeling Wear cutting Tool
在线阅读 下载PDF
Research on the Cutting Performance of Cubic Boron Nitride Tools
7
作者 ZHENG Xiao-hua 1,2, YU Qi-xun 1, LIN Jing 1, LU Ming 2, PANG Si-qin 1 (1. School of Mechanical Engineering and Automation, Beijing Institute of Technology, Beijing 100081, China 2. School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期3-4,共2页
There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and m... There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic compound C 3N 4 with the theory of molecule engineering. According to calculation, it can reach or even exceed the hardness of diamond, so material scientists and technique circles draw their attention to it. A high speed steel twist drill coated with C 3N 4 film is applied to the drilling hole process on steel workpiece in cutting tests, the tool life is increased greatly. When the C 3N 4 film is coated on the cemented carbide inserts, the cutting performance is improved, but is not good enough. The data of mechanical performance and cutting tests about this kind of new tool material is given in this paper, it shows that C 3N 4 has a promising future. The anti-wear ability of cutting tool increases sharply after C 3N 4 being coated on HSS tool. Coated HSS drill also has some benefit after being reground. The tool life prolongs after C 3N 4 being coated on cemented carbide inserts, but is not so long as that of C 3N 4 coated HSS tool. When machining PRCM with C 3N 4 thin-film coated cemented carbide tool, the cutting performance is poor and it is much better when machining PRCM with PCBN, PCD compound plates and CVD thick-film coated cutting tool. Some relative aspects need to be deeply discussed and researched, e.g. the existing coating techniques is not good enough and should be improved in the future, the film thickness should be optimized and try to find out the most effective value, the binding force and mutual effect between coated film and substrate need to be studied furtherly, etc. 展开更多
关键词 ultrahard material carbon nitride cutting tools cutting performance
在线阅读 下载PDF
MULTI-SCALE AND MULTI-PHASE NANOCOMPOSITE CERAMIC TOOLS AND CUTTING PERFORMANCE 被引量:3
8
作者 HUANG Chuanzhen LIU Hanlian +1 位作者 WANG Jun WANG Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期5-7,共3页
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f... An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched. 展开更多
关键词 Multi-scale and multi-phase Ceramic tool material Mechanical properties cutting performance
在线阅读 下载PDF
Point-Based Data Analysis for Extracting Parameters of Cutting Tools
9
作者 陈田 杜晓明 +1 位作者 郑建明 邹欣珏 《Tsinghua Science and Technology》 SCIE EI CAS 2009年第S1期47-55,共9页
Various types of cutting tools are known and are in use for machining parts. The dimensional parameters associated with cutting tools need to be estimated and compared to the desired values for determining their cutti... Various types of cutting tools are known and are in use for machining parts. The dimensional parameters associated with cutting tools need to be estimated and compared to the desired values for determining their cutting performance. In this paper, a data analysis methodology for extracting parameters from a measured point set corresponding to the surface of a cutting tool is provided. We propose that the 3-D data can be simplified into 2-D data or regular data by virtually slicing it at a predetermined section or by projecting it onto a same axial plane after a simple fixed-axis rotation. A plurality of curves can be generated and optimized based on the obtained 2-D points on a cross section for calculating the section parameters, including radial (axial) rake angle, relief angle, and land width. Other dimensional parameters can also be extracted from the contour of the presented rotary axial projection data. The experimental results have shown that the approaches elaborated in this paper are effective and robust, which can be potentially extended to other applications such as the inspection of similar parts and their parameters extraction. 展开更多
关键词 cutting tool parameter extraction digital geometry processing reverse engineering
原文传递
Design and Performance Verification of a Novel Eccentric Rotational Cutting Tool for Removal of Vascular Calcification Tissue
10
作者 Chuhang Gao Zhaoju Zhu +1 位作者 Ziyu Cui Bingwei He 《Chinese Journal of Mechanical Engineering》 2025年第6期385-403,共19页
Cardiovascular disease is the leading cause of human mortality,and calcified tissue blocking blood vessels is the main cause of major adverse cardiovascular events(MACE).Rotational Atherectomy(RA)is a minimally invasi... Cardiovascular disease is the leading cause of human mortality,and calcified tissue blocking blood vessels is the main cause of major adverse cardiovascular events(MACE).Rotational Atherectomy(RA)is a minimally invasive catheterbased treatment method that involves high-speed cutting of calcified tissue using miniature tools for removal.However,the cutting forces,heat,and debris can induce tissue damage and give rise to serious surgical complications.To enhance the effectiveness and efficiency of RA,a novel eccentric rotational cutting tool,with one side comprising axial and circumferential staggered micro-blades,was designed and fabricated in this study.In addition,a series of experiments were conducted to analyze their performance across five dimensions:tool kinematics,force,temperature,debris,and surface morphology of the specimens.Experimental results show that the force,temperature and debris size of the novel tool were well inhibited at the highest rotational speed.For the tool of standard clinical size(diameter 1.25 mm),the maximum force is 0.75 N,with a maximum temperature rise in the operation area of 1.09℃.Debris distribution followed a normal distribution pattern,with 90%of debris measuring smaller than 9.12μm.All tool metrics met clinical safety requirements,indicating its superior performance.This study provides a new idea for the design of calcified tissue removal tools,and contributes positively to the advancement of RA. 展开更多
关键词 Rotational atherectomy Calcified tissue removal Eccentric cutting tool Tool performance
在线阅读 下载PDF
Method for determining the installation interval of vortexing cuttings removal tool and its mechanism
11
作者 Feng Chen Hong-Lin Lu +4 位作者 Zhi-Hu Liu Wen-Chang Wang Ya Liu Wei Wang Qin-Feng Di 《Petroleum Science》 2025年第9期3787-3802,共16页
Recent advancements in drilling technology have driven substantial progress in cuttings removal tool development,particularly for addressing borehole cleaning challenges in highly deviated directional critical factors... Recent advancements in drilling technology have driven substantial progress in cuttings removal tool development,particularly for addressing borehole cleaning challenges in highly deviated directional critical factors in operational safety and efficiency improvement.Despite these innovations,two fundamental challenges persist:an incomplete understanding of mechanistic cuttings removal processes and an insufficient methodological framework for optimal tool installation.Studying the installation positions and assessing the effects of two cuttings removal are essential steps to advance the application of such tools.This investigation was initiated with a comprehensive analysis of particle settling dynamics and migration behaviors in annular wellbore spaces.Building upon Moore's terminal settling velocity equation,a modified model was developed to characterize the transport patterns of cuttings.Through model integration,the precise positioning of the efficient Vortex Cuttings Removal Tool(VCRT)was determined at 188 m from the bit.Subsequently,Computational Fluid Dynamics(CFD)numerical simulation was employed to reveal distinct annular flow field characteristics between VCRT and conventional drilling tools.Field validation in Well Z401X demonstrated a strong correlation between empirical measurements and simulated predictions,with pressure drop deviations of 6.25%and rotational speed variances limited to 7.50%.Analytical results confirmed VCRT's superior performance,exhibited 36.43%reductions in cuttings accumulation at the wellbore's lower quadrant compared to conventional drilling tools.The application of VCRT accelerated cuttings migration velocity in the annular space,significantly increasing the volume of returned onsite cuttings.Friction resistance decreased by approximately 35.90%,indicating higher cuttings removal efficiency than conventional drilling tools. 展开更多
关键词 cuttings removal tool Borehole cleaning Installation positions Computational fluid dynamics Annular flow field
原文传递
FABRICATION OF DLC COATED COBALT-CEMENTED TUNGSTEN CARBIDE MICRO-DRILLS AND THEIR CUTTING PERFORMANCE 被引量:4
12
作者 马玉平 陈明 +1 位作者 向道辉 孙方宏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期89-93,共5页
In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cem... In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions. 展开更多
关键词 DLC film bias-enhanced HFCVD cobalt-cemented tungsten carbide cutting tool micro-drilling cutting performance
在线阅读 下载PDF
Tool Life and Surface Integrity in High-speed Milling of Titanium Alloy TA15 with PCD/PCBN Tools 被引量:39
13
作者 SU Honghua LIU Peng +1 位作者 FU Yucan XU Jiuhua 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第5期784-790,共7页
Titanium alloys are widely used in aeronautics that demand a good combination of high strength, good corrosion resistance and low mass. The mechanical properties lead to challenges in machining operations such as high... Titanium alloys are widely used in aeronautics that demand a good combination of high strength, good corrosion resistance and low mass. The mechanical properties lead to challenges in machining operations such as high process temperature as well as rapidly increasing tool wear. The conventional tool materials are not able to maintain their hardness and other mechanical prop- erties at higher cutting temperatures encountered in high speed machining. In this work, the new material tools, which are poly- crystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) tools, are used in high-speed milling of Ti-6.5AI-2Zr-IMo-IV (TA15) alloy. The performance and wear mechanism of the tools are investigated. Compared to PCBN tool, PCD tool has a much longer tool life, especially at higher cutting speeds. Analyses based on the SEM and EDX suggest that attrition, adhesion and diffusion are the main wear mechanisms of PCD and PCBN tools in high-speed milling of TA 15. Oxida- tion wear is also observed at PCBN tool/workpiece interface. Roughness, defects, micro-hardness and microstructure of the ma- chined surface are investigated. The recorded surface roughness values with PCD/PCBN tools are bellow 0.3 μm at initial and steady cutting stage. Micro-hardness analysis shows that the machined surface hardening depth with PCD and PCBN tools is small. There is no evidence of sub-surface defects with PCD and PCBN tools. It is concluded that for TA15 alloy, high-speed milling can be carried out with PCD/PCBN tools. 展开更多
关键词 high-speed milling titanium alloys cutting tools WEAR surface integrity
原文传递
Geometry of screw compressor rotors and their tools 被引量:17
14
作者 Nikola STOSIC Ian K.SMITH +1 位作者 Ahmed KOVACEVIC Elvedin MUJIC 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第4期310-326,共17页
This paper presents a method of general geometrical definitions of screw machine rotors and their manufacturing tools.It describes the details of lobe shape specification,and focuses on a new lobe profile,which yields... This paper presents a method of general geometrical definitions of screw machine rotors and their manufacturing tools.It describes the details of lobe shape specification,and focuses on a new lobe profile,which yields a larger cross-sectional area and shorter sealing lines resulting in higher delivery rates for the same tip speed.A well proven mathematical model was used to determine the optimum profile,compressor housing size,and compressor ports to achieve the superior compressors. 展开更多
关键词 Geometry of screw compressors Rotor lobe profile cutting tools
原文传递
Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications 被引量:9
15
作者 T.Sampath Kumar S.Balasivanandha Prabu +1 位作者 Geetha Manivasagam K.A.Padmanabhan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期796-805,共10页
Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were charac... Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM micrographs revealed that the AlrN and AlCrN/TiAlN coatings were uniform and highly dense and contained only a limited number of microvoids. The TiAIN coating was non-uniform and highly porous and contained more micro droplets. The hardness and scratch resistance of the specimens were measured using a nanoindentation tester and scratch tester, respectively. Different phases formed in the coatings were analyzed by X-ray diffraction (XRD). The AlCrN/TiAlN coating exhibited a higher hardness (32.75 GPa), a higher Young's modulus (561.97 GPa), and superior scratch resistance (LcN = 46 N) compared to conventional coatings such as TiAlN, A1CrN, and TiN. 展开更多
关键词 cutting tools COATINGS physical vapor deposition characterization NANOINDENTATION
在线阅读 下载PDF
Multi-Sensor Intelligent System for On-Line and Real-Time Moneitoring Tool Cutting State in FMS 被引量:1
16
作者 徐春广 王信义 +1 位作者 邢济收 杨大勇 《Journal of Beijing Institute of Technology》 EI CAS 1997年第3期258-266,共9页
The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sens... The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sensor (AE) with motor current sensor was presented. The parallel communication between control system of machine tools, the monitoring intelligent system,and several decision-making systems for identifying tool cutting state was established It can auto - matically select the sensor way ,monitoring mode and identifying method in machining process- ing so as to build a successful and effective intelligent system for on -line and real-time moni- toring cutting tool states in FMS. 展开更多
关键词 tool cutting state on-line monitoring intelligent system acoustic emission sensor
在线阅读 下载PDF
Failure Mechanism of CVD Coated Carbide Tools 被引量:1
17
作者 庞思勤 《Journal of Beijing Institute of Technology》 EI CAS 1997年第1期67-71,共5页
Through systematically theoretical analysis and experimental research,the failure mechanism,of CVD(chemical vapor deposition) coated carbide tools in wear and fracture conditions was studied.On the basis of mechanism ... Through systematically theoretical analysis and experimental research,the failure mechanism,of CVD(chemical vapor deposition) coated carbide tools in wear and fracture conditions was studied.On the basis of mechanism analysis,the specific suitability of the coated tools for cutting conditions was revealed and clarified. 展开更多
关键词 coated cutting tool cemented carbide chemical vapor deposition failure mechanism
在线阅读 下载PDF
Reverse Engineering Based Methodology for Redesigning Contour Milling Tools 被引量:2
18
作者 A. P. Valerga M. Batista +2 位作者 J. Salguero A. Gomez-Parra M. Marcos 《World Journal of Engineering and Technology》 2016年第3期206-212,共7页
Reverse Engineering (RE) involves the use of techniques aimed to retrieve information about manufactured products, not only regarding geometries, but also materials and functionality. Today, even if several RE techniq... Reverse Engineering (RE) involves the use of techniques aimed to retrieve information about manufactured products, not only regarding geometries, but also materials and functionality. Today, even if several RE techniques are known, many of them still leave the object unusable to analyze. Nevertheless, other alternatives to this problem allows for obtaining a Digital or Virtual Model (VM) via the three-dimen- sional scanning. Getting the VM of an item, via scanning or not, can offer many possibilities to digital analysis (FEM). Furthermore, starting from VM, it is possible to achieve the physical reproduction of an element, part or workpiece—in the same or different materials—using Additive Manufacturing (AM) technologies. This enables to improve the product through a redesign process. In this paper, a RE based methodology is proposed for redesigning a tool for contour milling, after comparing different microscopy based techniques, 3D-Scanner tools and CAD-CAGD utilities for generating a Virtual Model of the newly designed mill. 展开更多
关键词 Reverse Engineering cutting tools Simulation 3D Scanning Modelling
在线阅读 下载PDF
Cutting Performance of WC-Co Alloys Modified by Nano-Additives 被引量:1
19
作者 You Wang Zhaoyi Pan +3 位作者 Chengbiao Wang Xiaoguang Sun Zhijian Peng BaolinWang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第3期205-213,共9页
In this paper,the microstructure of WC-Co alloys with and without nano-additives was characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The hardness and fracture toughness... In this paper,the microstructure of WC-Co alloys with and without nano-additives was characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The hardness and fracture toughness was tested by using a Vickers hardness tester and a universal testing machine.The cutting test was carried out at different feed velocities(250 r/min and 320 r/min),and the contact pairs are cutting tools and 45# steel bars.Results showed that the hardness and fracture toughness of WC-Co cemented carbides with nano-additives are higher than that of WC-Co cemented carbides without nano-additives,and they are increased 10.21% and 19.69%,respectively.The flank worn width and crater width of cutting tools decrease greatly with the addition of nano-additives.For the nano-modified specimen with WC grain size of 7 μm,both the flank worn width and crater width are the minimum after the cutting process.And there are little built-up layers and some pile-up regions on the flank face leading to high cutting performance for the nano-modified cemented carbides.There are some melted regions on the flank face of cutting tools without nano-additives,and the WC grains on the cross section of alloys without nano-additives show severe fragmentation.The wear type of WC-Co is flank wear,and the wear mechanism is abrasive,adhesion and oxidation wear. 展开更多
关键词 cutting tools Hardness Fracture Surface analysis
原文传递
Influence of transversal vibration on cutting performance and surface integrity during ultrasonic peening drilling of Al-Li alloys
20
作者 Zhefei SUN Daxi GENG +6 位作者 Hailin GUO Ende GE Entao ZHOU Zhilei FAN Fanxing MENG Xinggang JIANG Deyuan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期493-507,共15页
Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied ... Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied to the cutting tools,is a recently proposed hole-making method that integrates precision-machining and surface strengthening by single-shot operation.In the study,kinematics,material removal mechanism and strengthening mechanism for UPD of Al-Li alloy by helical fluted reamers are analyzed.The effect of transversal vibration on the cutting performance and surface integrity is studied through comparative experiments between UPD and conventional drilling(CD)of Al-Li alloy holes.The experimental results show that UPD exhibits superior cutting performance with a maximum reduction of 52.6%in thrust force and 52.3%in torque,respectively,compared to CD.Moreover,narrower dimensional tolerance is obtained in UPD due to the reduced transversal force and improved machining stability.Additionally,deeper plastic deformation,higher surface microhardness and residual compressive stress of machined holes are obtained by UPD.The electron back-scattered diffraction(EBSD)analysis confirms that deeper machined affect area and grain refinement are realized in UPD.Therefore,the results indicate that UPD is a feasible method for achieving high-precision and strengthened holes for Al-Li alloy. 展开更多
关键词 Al-Li alloy Ultrasonic transversal vibration cutting tools Strengthening mechanism Surface integrity
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部