期刊文献+
共找到1,791篇文章
< 1 2 90 >
每页显示 20 50 100
Ecological environment analysis of Abies holophylla plantations under different cutting systems
1
作者 陈宏吉 《Journal of Forestry Research》 SCIE CAS CSCD 1999年第3期181-182,共2页
Different types of plantations were observed in Baishilazi National Nature Reserve, Liaoning Province, for 34 a. The environmental quality ofAbies holophylla plantations was analyzed under different cutting systems. A... Different types of plantations were observed in Baishilazi National Nature Reserve, Liaoning Province, for 34 a. The environmental quality ofAbies holophylla plantations was analyzed under different cutting systems. Analysis factors included soil erosion rate, humification degree of litters, and water hold capacity. The surface soil loss of clear cutting area was 19000t·km?2·a?1 more than that of selective cutting area. The content of soil organic matter in board-leaved—Abies holophylla forest was 4.62% more than that in pure stand, and the water hold capacity of the mixed forest was 1.43 time of that of pure stand. The mixed forest of board-leaved—Abies holophylla by selective cutting can upgrade the ecological environment quality. 展开更多
关键词 cutting systems Abies holophylla plantation Ecological environment
在线阅读 下载PDF
Research on the Mechanism of Abrasive Particles Accelerated and a Cutting System of a Premixed Abrasive Jet
2
作者 LIU Li-hong LIU Ben-li 《International Journal of Plant Engineering and Management》 2010年第4期200-206,共7页
Forces acting on abrasive in the process of speeding up have been analyzed. Motion differential equation of abrasive in a pipeline and nozzle has been given, respectively. Mechanisms of abrasive particles accelerated ... Forces acting on abrasive in the process of speeding up have been analyzed. Motion differential equation of abrasive in a pipeline and nozzle has been given, respectively. Mechanisms of abrasive particles accelerated in a premixed abrasive jet has been analyzed. The study shows that driven by high-pressure water, velocity of an abrasive is near to velocity of water in pipeline through the acceleration distance. In the taper section of a nozzle, water and abrasive particles are greatly accelerated at the same time. But velocity of an abrasive always lags behind velocity of water. A premixed abrasive jet cutting system has been introduced. The structure and working principles of the system have been given. The system is an assembly of abrasive screening and filling. By use of the premixed abrasive jet cutting system established, cutting experiments have been made to test the main parameters which influence the cutting performances such as working pressure, standoff and traverse velocity, and the nozzle diameter affecting cutting chink width. 展开更多
关键词 premixed abrasive jet mechanism of acceleration cutting system cutting experiments
在线阅读 下载PDF
Reasonable location parameters of pick and nozzle in combined cutting system 被引量:4
3
作者 曾锐 杜长龙 +1 位作者 陈荣俊 王文娟 《Journal of Central South University》 SCIE EI CAS 2014年第3期1067-1076,共10页
The drum shearer and high pressure water jet combined cutting system is an effective technology to cut hard coal-rock, but one problem of the technology is the choice of pick and nozzle location parameters. In order t... The drum shearer and high pressure water jet combined cutting system is an effective technology to cut hard coal-rock, but one problem of the technology is the choice of pick and nozzle location parameters. In order to solve the problem, the process and mechanism of combined cutting arc studied and mining seepage catastrophe theory is used to construct the mathematic and physical model of combined cutting hard coal-rock. Based on the model and detailed analysis of combined cutting mechanism, the single pick and nozzle combined cutting test-bed is built to test the main pick and nozzle location parameters of drum shearer and water jet combined cutting system. Test results show that the best vertical distance between the pick-tip and nozzle center point is the sum of cutting thickness and proper target distance in the Y axial direction; the best horizontal distance is the length between pick-tip point and coal-rock surface bursting crack point in the X axial direction. The best incident angle of water jet should be the same as the bursting crack line's angle in theory, but considering other important factors comprehensively, it is more reasonable when the incident angle of water jet is 90°. 展开更多
关键词 combined cutting location parameter water jet mining seepage theory hard coal-rock
在线阅读 下载PDF
Diameter distribution of trees in natural stands managed on polycyclic cutting system 被引量:5
4
作者 ZHENG Li-feng ZHOU Xin-nian 《Forestry Studies in China》 CAS 2010年第1期21-25,共5页
Diameter frequency distribution in a specific stand provides basic information for forest resources management. In this study, four probability models were applied to analyze diameter distribution of natural forests a... Diameter frequency distribution in a specific stand provides basic information for forest resources management. In this study, four probability models were applied to analyze diameter distribution of natural forests after selective cutting with different intensities (low intensity of 13.0% in volume, medium intensity of 29.1%, high intensity of 45.8%, and extra-high intensity of 67.1%) The results show that the skewness and kurtosis of the four models are positive except that of low intensity selective cutting, which suggest that the number of small-size trees dominate the stand. The more intensity of selective cutting, the wider range of diameter distributions. The diameter structure of selective cutting with low intensity met Weibull and Beta distributions; that of medium intensity met Weibull, negative exponential as well as Gamma distributions; that of high intensity cutting met Weibull and negative exponential distributions, but that of extra-high intensity could not meet any above model. Weibull distribution model fits better than others regarding the structure of diameter distribution in natural forests managed on polycyclic cutting system. The results will provide basic information for sustainable management for mixed natural stands managed on a polycyclic cutting system. 展开更多
关键词 diameter distribution model natural forests cutting intensity Weibull distribution
在线阅读 下载PDF
Ultrasonic vibration-assisted cutting of titanium alloys:A state-of-the-art review 被引量:3
5
作者 Ahmar KHAN Xin WANG +7 位作者 Biao ZHAO Wenfeng DING Muhammad JAMIL Aqib Mashood KHAN Syed Hammad ALI Sadam HUSSAIN Jiong ZHANG Raj DAS 《Chinese Journal of Aeronautics》 2025年第1期3-42,共40页
The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med... The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry. 展开更多
关键词 Ultrasonic vibration-assisted cutting Titanium alloys Material removal mechanism MACHINABILITY SUSTAINABILITY
原文传递
Design and Numerical Simulation of Dust Removal System for Sutomotive Iongitudinal Beam Plasma Cutting
6
作者 Wenqiang GAO Xudong MA Heyu TIAN 《Mechanical Engineering Science》 2024年第1期30-34,共5页
To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust remova... To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust removal system is designed,and the dust removal effect is optimized through the setting of the following dampers and diversion plates.The result of numerical simulation indicates that the particle collection rate can reach 99.44%,and the field test also proves the effectiveness of the dust removal system,which is of guiding significance for the transformation of other similar dust removal systems. 展开更多
关键词 plasma cutting dust removal equipment SIMULATION
在线阅读 下载PDF
In-process cutting temperature measurement for ultra-precision machining:a comprehensive review and future perspectives
7
作者 Shiquan LIU Yuqi DING +4 位作者 Kaiyang XIA Hui LI Liang AN Zhongwei LI Yuan-Liu CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第9期853-875,共23页
With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevit... With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevity.This review comprehensively evaluates modern in-process cutting temperature measurement methods,comparing conventional approaches and emerging technologies.Thermal conduction-based and radiation-based measurement paradigms are analyzed in terms of their merits,limitations,and domain-specific applicability,particularly with regard to the unique challenges involving micro-scale cutting zones in UPM.Special emphasis is placed on micro-scale sensor-integrated tools and self-sensing tools that enable real-time thermal monitoring at cutting edges.Furthermore,we explore thermal monitoring and management techniques for atomic and close-to-atomic scale manufacturing(ACSM),as well as the transformative potential of emerging technologies like artificial intelligence(AI),internet of things(IoT),and data fusion for machining temperature measurement.This review may serve as a reference for UPM cutting temperature measurement research,helping foster the development of optimized process control technologies. 展开更多
关键词 cutting temperature measurement Ultra-precision machining(UPM) In-process monitoring Smart sensors Micro-scale cutting zones
原文传递
Blade Cutting Influence on Centrifugal Pump Noise Reduction
8
作者 Tianpeng Li Yujun Duan Qianghu Ji 《Fluid Dynamics & Materials Processing》 2025年第3期623-644,共22页
A centrifugal pump with a specific speed ns=67 is considered in this study to investigate the impact of blade cutting(at the outlet edge)on the fluid-induced noise,while keeping all the other geometric parameters unch... A centrifugal pump with a specific speed ns=67 is considered in this study to investigate the impact of blade cutting(at the outlet edge)on the fluid-induced noise,while keeping all the other geometric parameters unchanged.The required unsteady numerical calculations are conducted by applying the RNG k-εturbulence model with the volute dipole being used as the sound source.The results indicate that the internal pressure energy of the centrifugal pump essentially depends on the blade passing frequency and its low-frequency harmonic frequency.Moreover,the pressure pulsation distribution directly affects the noise caused by the centrifugal pump.The sound pressure inside and outside the centrifugal pump and the sound power at the blade passing frequency gradually decrease increasing cutting distance of the impeller blades.When the cutting percentage is 1.21%,that is,the clearance ratio between impeller blade and tongue is 8.57%,the comprehensive performance of the centrifugal pump is the best. 展开更多
关键词 Centrifugal pump IMPELLER cutting distance CLEARANCE sound field
在线阅读 下载PDF
How cutting-edge materials are replacing down and opaque fabrics in modern apparel?
9
作者 Zhao Xinhua 《China Textile》 2025年第4期30-31,共2页
Have we ever seen such a shocking garment in the fashion industry?A down jacket that claims to be one but uses absolutely no down,yet possesses remarkable heating and insulating properties,all designed with a colorles... Have we ever seen such a shocking garment in the fashion industry?A down jacket that claims to be one but uses absolutely no down,yet possesses remarkable heating and insulating properties,all designed with a colorless aesthetic.It resembles clothing that has come from the future.The secret behind this captivating design lies in"SOLAMENTR■"developed by Sumitomo Metal Mining Co.,Ltd. 展开更多
关键词 opaque fabrics Sumitomo Metal Mining Co Ltd down jacket Solamant heating properties insulating properties colorless aesthetic cutting edge materials
在线阅读 下载PDF
Optimization of Nesting Systems in Shipbuilding:A Review
10
作者 Sari Wanda Rulita Gunawan Muzhoffar Dimas Angga Fakhri 《哈尔滨工程大学学报(英文版)》 2025年第1期152-175,共24页
This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production ... This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production efficiency.The shipbuilding process involves the complex cutting and arrangement of steel plates,making the optimization of these operations vital for cost-effectiveness and sustainability.Nesting algorithms are broadly classified into four categories:exact,heuristic,metaheuristic,and hybrid.Exact algorithms ensure optimal solutions but are computationally demanding.In contrast,heuristic algorithms deliver quicker results using practical rules,although they may not consistently achieve optimal outcomes.Metaheuristic algorithms combine multiple heuristics to effectively explore solution spaces,striking a balance between solution quality and computational efficiency.Hybrid algorithms integrate the strengths of different approaches to further enhance performance.This review systematically assesses these algorithms using criteria such as material dimensions,part geometry,component layout,and computational efficiency.The findings highlight the significant potential of advanced nesting techniques to improve material utilization,reduce production costs,and promote sustainable practices in shipbuilding.By adopting suitable nesting solutions,shipbuilders can achieve greater efficiency,optimized resource management,and superior overall performance.Future research directions should focus on integrating machine learning and real-time adaptability to further enhance nesting algorithms,paving the way for smarter,more sustainable manufacturing practices in the shipbuilding industry. 展开更多
关键词 cutting plate Nesting algorithms Nesting optimization Shipbuilding efficiency Algorithmic optimization
在线阅读 下载PDF
Strength prediction and cuttability identification of rock based on monitoring while cutting(MWC)using a conical pick
11
作者 Shaofeng Wang Yumeng Wu +2 位作者 Xinlei Shi Xin Cai Zilong Zhou 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1025-1043,共19页
Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ mod... Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ modification of hard rocks.This study proposes an in-telligent approach for predicting rock strength and cuttability.A database comprising 132 data sets is established,containing cutting para-meters(such as cutting depth and pick angle),cutting responses(such as specific energy and instantaneous cutting rate),and rock mech-anical parameters collected from conical pick-cutting experiments.These parameters serve as input features for predicting the uniaxial compressive strength and tensile strength of rocks using regression fitting and machine learning methodologies.In addition,rock cuttabil-ity is classified using a combination of the analytic hierarchy process and fuzzy comprehensive evaluation method,and subsequently iden-tified through machine learning approaches.Various models are compared to determine the optimal predictive and classification models.The results indicate that the optimal model for uniaxial compressive strength and tensile strength prediction is the genetic algorithm-optimized backpropagation neural network model,and the optimal model for rock cuttability classification is the radial basis neural network model. 展开更多
关键词 conical picks strength prediction cuttability identification machine learning monitoring while cutting
在线阅读 下载PDF
The Discovery of Water Conduction in Karst Collapsed Column Caused by Fault Cutting:Evidence from Chronology,Exploration Data and Hydrochemical Test
12
作者 LU Cunjin CHAI Jincheng +2 位作者 XU Jinpeng LI Pu BIAN Kai 《Acta Geologica Sinica(English Edition)》 2025年第1期272-283,共12页
The water conductivity of karst collapsed column is affected by multiple factors such as the characteristics of its own column filling,structure and mining disturbance.As a structural water-conducting channel,fault us... The water conductivity of karst collapsed column is affected by multiple factors such as the characteristics of its own column filling,structure and mining disturbance.As a structural water-conducting channel,fault usually plays a controlling role in hydrogeological structure.During the process of mine water hazard prevention and control,it was discovered that the lithology composition,compaction and cementation degree and water physical properties of karst collapsed column fillings were all non-conducting water,but due to the influence of combined development faults,some exploration drill holes showed concentrated water outflow.Based on this,the scientific hypothesis was proposed that fault cutting leads to water conduction in karst collapsed columns.The study comprehensively used methods like chronology,exploration data analysis,and hydrochemical testing to analyze the chronological relationship between faults and karst collapsed columns,their spatial relationship,outlet point distribution and water chemical properties,and the impact of faults on the water-conductivity of karst collapsed columns,which proved the effect of fault cutting on changing water conductivity of karst collapsed column.The research showed that later fault cutting through karst collapsed columns turned the originally non-conductive karst collapsed columns into water-conductive collapsed columns at the fault plane,creating a longitudinally connected water-conducting channel.A new model of fault cutting karst collapsed column to change the original water conductivity of karst collapsed column was proposed.The research results can provide a theoretical basis for the prediction of the water conductivity of the karst collapsed column.According to whether the karst collapsed column was cut by the fault,it was predicted theoretically,so as to determine the key areas of water conductivity detection and prevention and control,and has broad application prospects under the background of source control of mine water disaster. 展开更多
关键词 fault cutting karst collapsed column hydraulic conductivity drilling exploration hydrochemical test
在线阅读 下载PDF
Performance Analysis and Prediction of Rock Cutting with a Rotating Abrasive Water Jet
13
作者 Hongxiang Jiang Huihe Zhao +2 位作者 Xiaodi Zhang Zijian Wu Mingjin Zhao 《Chinese Journal of Mechanical Engineering》 2025年第3期119-136,共18页
During the excavation process of deep hard rock tunnels,precutting rock with an abrasive water jet can weaken their strength and improve the efficiency of mining machinery.However,owing to the complex geological envir... During the excavation process of deep hard rock tunnels,precutting rock with an abrasive water jet can weaken their strength and improve the efficiency of mining machinery.However,owing to the complex geological environment,abrasive jets cannot fully utilize their rock-cutting performance.To fully exploit the advantages of high-pressure abrasive water jets,five orthogonal experiments were designed for rocks with significant differences in strength.Experimental research has been conducted on the performance of rotating abrasive waterjet-cutting rocks.Moreover,a neural network prediction model for predicting rock-cutting characteristics is established by comprehensively considering rock mechanics parameters and abrasive water jet parameters.The results show that the cutting depth of rocks with different strengths increases nonlinearly with increasing work pressure of the abrasive water jet.The cutting depth decreases exponentially with increasing cutting velocity.The cutting depth first increases and then decreases with increasing target distance,and the best target distance is between 4 mm and 6 mm.The effect of the target distance on the cutting width of rock is the most significant,but the cutting width of high-strength rock is not sensitive to changes in the working parameters of the abrasive water jet.The average relative errors of BP(backpropagation)neural networks optimized by global optimization algorithms in predicting rock cutting depth and width are 13.3%and 5.4%,respectively.This research combines the working characteristics of mining machinery to study the performance of abrasive waterjet rotary cutting of rocks and constructs a predictive model for the performance of abrasive waterjet cutting of rocks that includes rock strength factors.This provides a new solution for quickly adjusting the working parameters of abrasive water jets according to mining conditions. 展开更多
关键词 Abrasive water jet cutting rock PERFORMANCE PREDICTION
在线阅读 下载PDF
Impact of Hard Segment Structures on Fatigue Threshold of Casting Polyurethane Using Cutting Method
14
作者 Guang-Zhi Jin Le-Hang Chen +4 位作者 Yu-Zhen Gong Peng Li Run-Guo Wang Fan-Zhu Li Yong-Lai Lu 《Chinese Journal of Polymer Science》 2025年第2期303-315,共13页
The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of ... The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation. 展开更多
关键词 Casting polyurethane Fatigue threshold cutting method Hard segment structures Materials characterization
原文传递
Intelligent tool setting for vibration cutting process using machine vision and hearing
15
作者 Zhihao Ma Junhao Zhao +2 位作者 Jiahui Liu Peiyuan Ding Jianjian Wang 《Nanotechnology and Precision Engineering》 2025年第3期1-7,共7页
Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This... Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This study proposes an intelligent approach for tool setting in vibration cutting using machine vision and hearing,divided into two steps.In the first step,machine vision is employed to achieve rough precision in tool setting within tens of micrometers.Subsequently,in the second step,machine hearing utilizes sound pickup to capture vibration audio signals,enabling fine tool adjustment within 1μm precision.The relationship between the spectral intensity of vibration audio and cutting depth is analyzed to establish criteria for tool–workpiece contact.Finally,the efficacy of this approach is validated on an ultra-precision platform,demonstrating that the automated tool-setting process takes no more than 74 s.The total cost of the vision and hearing sensors is less than$1500. 展开更多
关键词 Vibration cutting Automatic tool setting Machine vision Machine hearing
在线阅读 下载PDF
From Global Expansion to Cutting-Edge AI:NEXWISE at the Forefront
16
作者 He Ming 《China's Foreign Trade》 2025年第3期42-47,共6页
The 3rd China International Supply Chain Expo(hereinafter referred to as the CISCE)is approaching,and NEXWISE Intelligence China Limited(hereinaf ter refer red to as NEXWISE Intelligence),a repeat exhibitor at the eve... The 3rd China International Supply Chain Expo(hereinafter referred to as the CISCE)is approaching,and NEXWISE Intelligence China Limited(hereinaf ter refer red to as NEXWISE Intelligence),a repeat exhibitor at the event,is ready for the show.In the E4 Hall’s Digital Technology Exhibition Zone,this AI-focused company will showcase its two flagship products and technology systems:“Zhang An Xing”Smart Security and“KuberAI(Producer Platform)”Computing Power Foundation,demonstrating China’s innovative AIdriven efforts in empowering industrial chain security. 展开更多
关键词 cutting edge ai digital technology exhibition zone supply chain nexwise intelligence china limited nexwise china international supply chain expo nexwise intelligence global expansion
在线阅读 下载PDF
Cutting Force and State Identification in High-Speed Milling:a Semi-Analytical Multi-Dimensional Approach
17
作者 Yu Zhang Xianyin Duan Kunpeng Zhu 《Chinese Journal of Mechanical Engineering》 2025年第1期140-160,共21页
High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high signific... High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high significance.However,considering the tool runout and size effects,many proposed models focus on the material and mechanical characteristics.This study presents a novel approach for predicting micromilling cutting forces using a semianalytical multidimensional model that integrates experimental empirical data and a mechanical theoretical force model.A novel analytical optimization approach is provided to identify the cutting forces,classify the cutting states,and determine the tool runout using an adaptive algorithm that simplifies modeling and calculation.The instantaneous un-deformed chip thickness(IUCT)is determined from the trochoidal trajectories of each tool flute and optimized using the bisection method.Herein,the computational efficiency is improved,and the errors are clarified.The tool runout parameters are identified from the processed displacement signals and determined from the preprocessed vibration signals using an adaptive signal processing method.It is reliable and stable for determining tool runout and is an effective foundation for the force model.This approach is verified using HSM tests.Herein,the determination coefficients are stable above 0.9.It is convenient and efficient for achieving the key intermediate parameters(IUCT and tool runout),which can be generalized to various machining conditions and operations. 展开更多
关键词 cutting force Tool runout Bisection method Discrete Fourier transform Generalization Table 1 The recursive algorithm of the least-squares solution of the coefficient matrix Kx
在线阅读 下载PDF
Coupling analysis of transient cuttings transport and tubular mechanical behaviors in extended-reach drilling
18
作者 Jun Zhao Wen-Jun Huang +1 位作者 De-Li Gao Wen-Long Li 《Petroleum Science》 2025年第3期1252-1269,共18页
It is generally believed that cuttings have a significant impact on the forces of tubular string in extended-reach drilling.However,there are few studies attempted to investigate and quantify it.In this paper,a three-... It is generally believed that cuttings have a significant impact on the forces of tubular string in extended-reach drilling.However,there are few studies attempted to investigate and quantify it.In this paper,a three-layer transient model for cuttings transport is established to simulate the characteristics of dynamic cuttings transport over time under various conditions.The simulation results indicate that the change in drilling parameters like ROP(rate of penetration)and flow rate of drilling fluid will lead to the non-uniform distribution of cuttings bed.And the alternation of drilling and circulation will lead to a clear wavy distribution of cuttings bed in the wellbore.Then,the effect of cuttings on tubular string is obtained through a large number of numerical simulations and the nonlinear regression method,and this influence is introduced into the conventional stiff rod model of tubular string.Finally,the transient model for cuttings transport is coupled with the modified tubular mechanic model and applies to a case study of extended-reach drilling.The results show that there is a delay effect for the effect of the changes in drilling parameters on the ground torques because the changes in drilling parameters occur instantaneously,while the changes in cuttings bed distribution are slow due to its low transport velocity.Based on the coupling analysis of transient cuttings transport and tubular mechanical behaviors,the drilling parameters are optimized,including the recommended adjustment period and adjustment range for the ROP,the proper drilling time for the increased flow rate.Furthermore,the circulation and back reaming are optimized.For circulation,the keys are choosing appropriate time interval between the two adjacent circulations and the time for each circulation.To avoid pipe stuck,at least 20 min of circulation is required to remove the cuttings bed near the large-sized BHA((Bottom Hole Assembly))before back reaming,and the maximum back reaming velocity should be smaller than the minimum transport velocity of the uniform bed. 展开更多
关键词 Extended-reach drilling Hole cleaning Transient cuttings transport Theoretical modeling Drilling optimization
原文传递
Method for determining the installation interval of vortexing cuttings removal tool and its mechanism
19
作者 Feng Chen Hong-Lin Lu +4 位作者 Zhi-Hu Liu Wen-Chang Wang Ya Liu Wei Wang Qin-Feng Di 《Petroleum Science》 2025年第9期3787-3802,共16页
Recent advancements in drilling technology have driven substantial progress in cuttings removal tool development,particularly for addressing borehole cleaning challenges in highly deviated directional critical factors... Recent advancements in drilling technology have driven substantial progress in cuttings removal tool development,particularly for addressing borehole cleaning challenges in highly deviated directional critical factors in operational safety and efficiency improvement.Despite these innovations,two fundamental challenges persist:an incomplete understanding of mechanistic cuttings removal processes and an insufficient methodological framework for optimal tool installation.Studying the installation positions and assessing the effects of two cuttings removal are essential steps to advance the application of such tools.This investigation was initiated with a comprehensive analysis of particle settling dynamics and migration behaviors in annular wellbore spaces.Building upon Moore's terminal settling velocity equation,a modified model was developed to characterize the transport patterns of cuttings.Through model integration,the precise positioning of the efficient Vortex Cuttings Removal Tool(VCRT)was determined at 188 m from the bit.Subsequently,Computational Fluid Dynamics(CFD)numerical simulation was employed to reveal distinct annular flow field characteristics between VCRT and conventional drilling tools.Field validation in Well Z401X demonstrated a strong correlation between empirical measurements and simulated predictions,with pressure drop deviations of 6.25%and rotational speed variances limited to 7.50%.Analytical results confirmed VCRT's superior performance,exhibited 36.43%reductions in cuttings accumulation at the wellbore's lower quadrant compared to conventional drilling tools.The application of VCRT accelerated cuttings migration velocity in the annular space,significantly increasing the volume of returned onsite cuttings.Friction resistance decreased by approximately 35.90%,indicating higher cuttings removal efficiency than conventional drilling tools. 展开更多
关键词 cuttings removal tool Borehole cleaning Installation positions Computational fluid dynamics Annular flow field
原文传递
Multi-Sensor Intelligent System for On-Line and Real-Time Moneitoring Tool Cutting State in FMS 被引量:1
20
作者 徐春广 王信义 +1 位作者 邢济收 杨大勇 《Journal of Beijing Institute of Technology》 EI CAS 1997年第3期258-266,共9页
The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sens... The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sensor (AE) with motor current sensor was presented. The parallel communication between control system of machine tools, the monitoring intelligent system,and several decision-making systems for identifying tool cutting state was established It can auto - matically select the sensor way ,monitoring mode and identifying method in machining process- ing so as to build a successful and effective intelligent system for on -line and real-time moni- toring cutting tool states in FMS. 展开更多
关键词 tool cutting state on-line monitoring intelligent system acoustic emission sensor
在线阅读 下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部