The Italian textile machinery sector,renowned for its technological excellence and innovative capacity,continues to navigate a complex global market with a strategic emphasis on digitalization,sustainability,and stron...The Italian textile machinery sector,renowned for its technological excellence and innovative capacity,continues to navigate a complex global market with a strategic emphasis on digitalization,sustainability,and strong customer partnerships.Marco Salvade’,President of ACIMIT,provided insights into the industry’s performance,key trends,and future directions.In the first quarter of 2025,Italian textile machinery exports saw a 6%decrease compared to the same period in 2024,totaling€363 million.This dip reflects ongoing geopolitical tensions and a cautious approach among global clients toward new investments.Despite these challenges,Italian manufacturers maintain a strong reputation for technological leadership and resilience.展开更多
The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability an...The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability and resource efficiency,particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands.To address the challenges of dynamic task allocation,uncertainty,and realtime decision-making,this paper proposes Pathfinder,a deep reinforcement learning-based scheduling framework.Pathfinder models scheduling data through three key matrices:execution time(the time required for a job to complete),completion time(the actual time at which a job is finished),and efficiency(the performance of executing a single job).By leveraging neural networks,Pathfinder extracts essential features from these matrices,enabling intelligent decision-making in dynamic production environments.Unlike traditional approaches with fixed scheduling rules,Pathfinder dynamically selects from ten diverse scheduling rules,optimizing decisions based on real-time environmental conditions.To further enhance scheduling efficiency,a specialized reward function is designed to support dynamic task allocation and real-time adjustments.This function helps Pathfinder continuously refine its scheduling strategy,improving machine utilization and minimizing job completion times.Through reinforcement learning,Pathfinder adapts to evolving production demands,ensuring robust performance in real-world applications.Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches,offering improved coordination and efficiency in smart factories.By integrating deep reinforcement learning,adaptable scheduling strategies,and an innovative reward function,Pathfinder provides an effective solution to the growing challenges of multi-robot job scheduling in mass customization environments.展开更多
Supplier selection in a mass customization environment is a systematic engineering,and Quality Function Deployment(QFD)based on customer demand is a systematic product development method.This paper studies the adaptab...Supplier selection in a mass customization environment is a systematic engineering,and Quality Function Deployment(QFD)based on customer demand is a systematic product development method.This paper studies the adaptability of the QFD method and supplier selection process in a mass customization environment and puts forward a supplier selection framework based on the QFD idea.Furthermore,both the objective environment of demand factor analysis and the thinking of the customer representatives participating in the analysis have great uncertainty and fuzziness.Therefore,a demand factor analysis method for supplier selection in the mass customization environment based on language phrases of different granularity is proposed.The proposed method allows the customer representatives participating in the selection to use their preferred language phrase set to represent the importance of demand factors.Finally,the effectiveness and feasibility of the proposed method are verified by an example of a vehicle manufacturer.展开更多
Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV...Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses.展开更多
To address the challenge of representing key index weights of logistics information systems in a mass customization environment using multi-granularity mixed semantic phrases,a method for determining index weights bas...To address the challenge of representing key index weights of logistics information systems in a mass customization environment using multi-granularity mixed semantic phrases,a method for determining index weights based on complex semantic information is proposed.First,an integrated method processes the multi-granularity mixed semantic variables to obtain initial index weights.Second,the probability of uncertain semantic information is calculated to determine the correction coefficient for key indicators of logistics information systems.Finally,the initial index weights and correction coefficients are synthesized to derive the final index weights.The effectiveness and feasibility of the proposed method are demonstrated using the selection of a logistics information system for a computer company as a case study.展开更多
文摘The Italian textile machinery sector,renowned for its technological excellence and innovative capacity,continues to navigate a complex global market with a strategic emphasis on digitalization,sustainability,and strong customer partnerships.Marco Salvade’,President of ACIMIT,provided insights into the industry’s performance,key trends,and future directions.In the first quarter of 2025,Italian textile machinery exports saw a 6%decrease compared to the same period in 2024,totaling€363 million.This dip reflects ongoing geopolitical tensions and a cautious approach among global clients toward new investments.Despite these challenges,Italian manufacturers maintain a strong reputation for technological leadership and resilience.
基金supported by National Natural Science Foundation of China under Grant No.62372110Fujian Provincial Natural Science of Foundation under Grants 2023J02008,2024H0009.
文摘The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability and resource efficiency,particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands.To address the challenges of dynamic task allocation,uncertainty,and realtime decision-making,this paper proposes Pathfinder,a deep reinforcement learning-based scheduling framework.Pathfinder models scheduling data through three key matrices:execution time(the time required for a job to complete),completion time(the actual time at which a job is finished),and efficiency(the performance of executing a single job).By leveraging neural networks,Pathfinder extracts essential features from these matrices,enabling intelligent decision-making in dynamic production environments.Unlike traditional approaches with fixed scheduling rules,Pathfinder dynamically selects from ten diverse scheduling rules,optimizing decisions based on real-time environmental conditions.To further enhance scheduling efficiency,a specialized reward function is designed to support dynamic task allocation and real-time adjustments.This function helps Pathfinder continuously refine its scheduling strategy,improving machine utilization and minimizing job completion times.Through reinforcement learning,Pathfinder adapts to evolving production demands,ensuring robust performance in real-world applications.Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches,offering improved coordination and efficiency in smart factories.By integrating deep reinforcement learning,adaptable scheduling strategies,and an innovative reward function,Pathfinder provides an effective solution to the growing challenges of multi-robot job scheduling in mass customization environments.
文摘Supplier selection in a mass customization environment is a systematic engineering,and Quality Function Deployment(QFD)based on customer demand is a systematic product development method.This paper studies the adaptability of the QFD method and supplier selection process in a mass customization environment and puts forward a supplier selection framework based on the QFD idea.Furthermore,both the objective environment of demand factor analysis and the thinking of the customer representatives participating in the analysis have great uncertainty and fuzziness.Therefore,a demand factor analysis method for supplier selection in the mass customization environment based on language phrases of different granularity is proposed.The proposed method allows the customer representatives participating in the selection to use their preferred language phrase set to represent the importance of demand factors.Finally,the effectiveness and feasibility of the proposed method are verified by an example of a vehicle manufacturer.
基金supported in part by National Natural Science Foundation of China(62271096,U20A20157)Natural Science Foundation of Chongqing,China(cstc2020jcyj-zdxmX0024,CSTB2022NSCQMSX0600)+5 种基金University Innovation Research Group of Chongqing(CXQT20017)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(CXTDX201601020)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202000626)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN202000626Chongqing Municipal Technology Innovation and Application Development Special Key Project(cstc2020jscx-dxwtBX0053)。
文摘Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses.
文摘To address the challenge of representing key index weights of logistics information systems in a mass customization environment using multi-granularity mixed semantic phrases,a method for determining index weights based on complex semantic information is proposed.First,an integrated method processes the multi-granularity mixed semantic variables to obtain initial index weights.Second,the probability of uncertain semantic information is calculated to determine the correction coefficient for key indicators of logistics information systems.Finally,the initial index weights and correction coefficients are synthesized to derive the final index weights.The effectiveness and feasibility of the proposed method are demonstrated using the selection of a logistics information system for a computer company as a case study.