Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential ...Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, Bose–Einstein distribution populates magnon states across all energies from opposite eigenmodes, and hence the magnon spin current is largely compensated. Contrary to this common observation,here, we show that magnets with X-type AFM stacking, where opposite magnetic sublattices form orthogonal intersecting chains, support giant magnon spin currents with minimal compensation. Our model Hamiltonian calculations predict magnetic chain locking of magnon spin currents in these X-type magnets, significantly reducing their compensation ratio. In addition, the one-dimensional nature of the chain-like magnetic sublattices enhances magnon spin conductivities surpassing those of two-dimensional ferromagnets and canonical altermagnets. Notably, uncompensated X-type magnets, such as odd-layer antiferromagnets and ferrimagnets, can exhibit magnon spin currents polarized opposite to those expected by their net magnetization. These unprecedented properties of X-type magnets, combined with their inherent advantages resulting from AFM coupling, offer a promising new path for low-power high-performance spintronics.展开更多
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to charact...Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to characterize F-region currents using magnetic data from the MSS-1(Macao Science Satellite-1) and Swarm satellite missions.Our approach employs a toroidal field representation,utilizing spherical harmonics to capture spatial variations and Fourier series to represent temporal dynamics.Two models,Model-A and Model-B,derived from distinct datasets,are constructed to represent current patterns at altitudes of 450 km and 512 km,respectively.Our models successfully capture the primary spatial structures and seasonal variations of polar field-aligned currents.Additionally,they accurately reproduce the localized inter-hemispheric field-aligned currents observed in mid and low latitudes during solstices,particularly between 14:00 and 16:00 magnetic local times.These findings enhance our understanding of ionospheric F-region currents and contribute to more precise geomagnetic field modeling.展开更多
0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability...0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability(Harris,2020;Chubarenko et al.,2016).展开更多
In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies...In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.展开更多
The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observatio...The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.展开更多
Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual curren...Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual current property in the area in observing dates. Then on the basis of observed data analysis and by employing the split-step method, the paper conducts a numerical simulation of the tidal current field, which can show the M2 tidal constituent tidal wave system, current ellipse distribution, maximum current velocity distribution and time-dependent current field. The calculated results agree well with the observed data, which can on the one hand reflect the basic specificities of temporal and spatial distribution of the M2 tidal constituent current field to some extent, and, on the other hand, offer more information about the hydrodynamic condition. So the paper would provide a scientific basis for the making of sea environment protection plans in the offshore area of Jiaonan under certain conditions.展开更多
The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the Nor...The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.展开更多
Since the beginning of the 20th century,alkaline electrolysis has been used as a proven method for producing hydrogen on a megawatt scale.The existence of parasitic shunt currents in alkaline water electrolysis,which ...Since the beginning of the 20th century,alkaline electrolysis has been used as a proven method for producing hydrogen on a megawatt scale.The existence of parasitic shunt currents in alkaline water electrolysis,which is utilized to produce clean hydrogen,is investigated in this work.Analysis has been done on a 20-cell stack.Steel end plates,bipolar plates,and an electrolyte concentration of 6 M potassium hydroxide are all included in the model.The Butler-Volmer kinetics equations are used to simulate the electrode surfaces.Ohmic losses are taken into consideration in both the electrode and electrolyte phases,although mass transport constraints in the gas phase are not.Using an auxiliary sweep to solve equations,the model maintains an isothermal condition at 85℃ while adjusting the average cell voltage between 1.3 and 1.8 V.The results show that lower shunt currents in the outlet channels as opposed to the intake channels are the result of the electrolyte’s lower effective conductivity in the upper channels,which is brought on by a lower volume fraction of the electrolyte.Additionally,it has been seen that the shunt currents intensify as the stack gets closer to the conclusion.Efficiency is calculated by dividing the maximum energy output(per unit of time)that a fuel cell operating under comparable conditions might produce by the electrical energy needed to generate that output inside the stack.At first,energy efficiency increases due to the rise in coulombic efficiency,peaking around 1400 mA.The subsequent decline after reaching 1400 mA is linked to an increase in stack voltage at elevated current levels.展开更多
Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and ...Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and tidal currents in the Beibu Gulf and Qiongzhou Strait are well reproduced.The model results show that the semidiurnal tidal wave propagates eastward from the Beibu Gulf through Qiongzhou Strait,while diurnal tidal waves enter the strait from both the eastern and western sides and interact on the southeast coast of the strait.The formation processes of the residual currents in Qiongzhou Strait in summer (August) and winter (January) are mainly discussed.It is shown that the total residual currents (coupling effect of wind,tide and density) in the strait are westward in both summer and winter.The water volume transported from the east to west into the Beibu Gulf is 0.026 Sv in summer and 0.116 Sv in winter.Numerical experiments indicate that the dominant factor affecting the residual currents in the strait is not the wind stress but the tidal rectification.The westward tide-induced residual current,driven by the tidal rectification,is rather strong in the strait with water volume transport of 0.063 Sv.The wind in summer only reduces the westward tide-induced residual current to a certain extent,and the wind in winter approximately doubles the westward tide-induced residual current through the strait.The density current contributes little to the total residual current in both summer and winter.展开更多
Single shot all-optical switching of the magnetization by femtosecond laser pulses in rare-earth transition-metal ferrimagnetic materials is particularly promising for future ultrafast magnetic storage applications.Mo...Single shot all-optical switching of the magnetization by femtosecond laser pulses in rare-earth transition-metal ferrimagnetic materials is particularly promising for future ultrafast magnetic storage applications.Moreover,ultrafast lasergenerated spin currents appear to play an important role in the switching process.Here,we try to separately detect the spin current from Gd in a Co/Gd bilayer system using terahertz time-domain spectroscopy.To this aim,we use different capping,buffer and embedded layers in order to tune the spin-to-charge and spin-current propagation and identify currents from each of the layers.We attribute the observed THz emission in all layers to the transition metal demagnetization induced spin currents,and detect no contribution from the Gd demagnetization.We attribute this absence of Gd-induced THz signal to the potentially slow demagnetization of Gd,which shift the emission spectra to lower frequencies,below our detection capabilities.These results highlight the limitations in using materials suffering from the so-called critical slowdown for the optimization of spintronic THz emitters.展开更多
Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our u...Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our understanding of tidal characteristics and residuals in this region. The tidal currents in Kemen Channel were identified as the regular semidiurnal and reversing tidal flows, with its behaviour more like standing waves. Moreover, the flood currents in the lower layers were found to be ahead of that in the upper layers and vice versa for ebb tides. The major of tidal ellipse for M2 constituent was found to be larger close to the southern side of the channel, with its incline also increasing toward the south. The signs of M4 constituent were also found mainly nearby the end points of this transect, indicating the importance of nonlinearity in tidal dynamics due to the shallower topography. A two-layer structure was found for the residual currents in Kemen Channel, flowing northeastwardly out of the Bay in upper 20m and southwestwardly into the bay in the lowers. Besides approximate 4.81×10^8 m^3 water exchanges were determined between the Luoyuan Bay and outer seas by the calculation of tidal flux through Kemen Channel.展开更多
A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular gr...A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular grids. In the case of anaccurate simulation of the tides and tidal currents in the Bohai Sea, this article focuseson the Yellow River mouth. The type of tides is irregular semi-diurnal and the type oftidal currents is the reciprocating flow, mostly parallel to the coastline. The tide inducedeulerian residual currents are a couple of eddies on each side of the river mouth, withthe anticlockwise on the left side and clockwise on the other side, and both of theeddies are enhanced by the Yellow River runoff. Two patterns of shear fronts areidentified at the conversion between the flood and ebb tidal phase. The results suggestthat the shear fronts be generated in the shallow water because the tidal phase of thecoastal area is ahead of the deeper seaward area, then moves seaward and finallydisappears 1-2 hours later.展开更多
Hydrographic and direct current measurements were made in the Eastern Equatorial Indian Ocean in May 2010 and April 2011 as part of the Eastern Indian Ocean Cruises(EIOC) organized by the South China Sea Institute of ...Hydrographic and direct current measurements were made in the Eastern Equatorial Indian Ocean in May 2010 and April 2011 as part of the Eastern Indian Ocean Cruises(EIOC) organized by the South China Sea Institute of Oceanology(SCSIO).Analyses of the shipdrift Acoustic Doppler Current Profiler(ADCP) data indicate that the equatorial currents observed in May 2010 are characterized by a strongly eastward surface current(Wyrtki Jets,WJs) with a maximum velocity of 0.9 m s 1,while that observed in April 2011 is weak and without a consistent direction.The strongly eastward WJ transports the surface water eastward,resulting in a deeper upper mixed layer,as shown in the temperature and salinity profiles.However,it was found that the Equatorial Undercurrent(EUC) in the Eastern Indian Ocean is strong in April 2011 and weak in May 2010.The EUC was located approximately at the position of the thermocline,and it had higher salinity(up to approximately 35.5 psu) than the upper and lower waters.展开更多
On the basis of the current measurements at 200,500 and 800 m from moored current meters with the time series data from March 17 to April 15 at the mooring station (20°49′57″N, 120°48′ 12″E) and the hydr...On the basis of the current measurements at 200,500 and 800 m from moored current meters with the time series data from March 17 to April 15 at the mooring station (20°49′57″N, 120°48′ 12″E) and the hydrographic data obtained in the Luzon Strait during the spring of 2002 cruise, the circulation in the investigated area is computed by using the modified inverse method. The major observed results are as follows: (1) the average velocity and the flow direction in the observing days are (47.4 cm/s, 346°) at the 200 m level. The average velocity in the observing days is (20.3 cm/s, 350? at the 500 m level. These mean that the Kuroshio intrudes into the South Chin Sea to flow northwestward through the Luzon Strait at 200 and 500 m levels. (2) The average velocity in the observing days is (1.2 cm/s, 35°) at the 800 m level, i. e., its direction is northeastward. This means that the flow condition at the 800 m level very differs from mat at the 200 and 500 m levels. (3) There is the high density and cold water (HDCW) in the middle of western part of in the investigated region, and its center is located near the hydrological station 3 at Section A. (4) There is the lower density and warm water (LDWW) in the southeastern part of investigated region. (5) The currents in April 2002 are stronger than those in March 2002.The major computed results are as follows: (1) The northwestward and southeastward VTs through Section B are 32.48×106 m3/s (inclusive of VT of anticyclonic eddy) and 3.34×106m3/s, respectively. The net northwestward VT through Section B in the investigated area is about 29.14×106 m3/s. (2) The eastern and western VTs through Section A are about 16.71×106 and 8.57×106 m3/s, respectively. Thus, the net eastward VT through Section A is about 8.14×106 m3/s. (3) The net northward VT through Section M is about 24.68×106 m3/s. (4) After about 24.68×106 m3/s flows through Section M, most of it, about 16.54×106 m3/s, flows northward through the eastern part of Section C and then flows northward into the region east Taiwan Island. The other part of it, about 8.14×106 m3/s, branches out from the main Kuroshio and then flows meanderingly through the western part of Section C. Thus, the Kuroshio has the two cores of current at Section C. (5) The direction of the computed current near the mooring station M agrees with the direction of the current measurements at 200 and 500 m from moored current meters, i.e., their directions both are northwestward. (6) About 3.34×106 m3/s of the South Chin Sea water probably flows slowly from the northwest to the southeast in the layer below 550 m at the western part of Section B.展开更多
The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transvers...The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transverse electric fields. It has been known as the unipolar field-effect transistor for 55-years since Shockley's 1952 invention,because the electron-current theory inevitably neglected the hole current from over-specified internal and boundary conditions, such as the electrical neutrality and the constant hole-electrochemical-potential, resulting in erroneous solutions of the internal and terminal electrical characteristics from the electron channel current alone, which are in gross error when the neglected hole current becomes comparable to the electron current, both in subthreshold and strong inversion. This report presents the general theory, that includes both electron and hole channels and currents. The rectangular ( x, y, z) parallelepiped transistors,uniform in the width direction (z-axis),with one or two MOS gates on thin and thick,and pure and impure base, are used to illustrate the two-dimensional effects and the correct internal and boundary conditions for the electric and the electron and hole electrochemical potentials. Complete analytical equations of the DC current-voltage characteristics of four common MOS transistor structures are derived without over-specification: the 1-gate on semi-infinite-thick impure-base (the traditional bulk transistor), the 1-gate on thin impure-silicon layer over oxide-insulated silicon bulk (SOI) ,the 1-gate on thin impure-silicon layer deposited on insulating glass (SOI TFT), and the 2-gates on thin pure-base (FinFETs).展开更多
The geotemperature gradient is considered as taking main part in generating the Earth’s magnetic field. It is shown that geotemperature gradient functions as a generator of both nuclear and mantle thermoelectrical cu...The geotemperature gradient is considered as taking main part in generating the Earth’s magnetic field. It is shown that geotemperature gradient functions as a generator of both nuclear and mantle thermoelectrical currents thanks to the great temperature difference between the core and the mantle. The movement of those currents is close to the radial direction towards the Earth’s crust. However, the nuclear thermocurrents movement tends to cyclically change into opposite one. If the mantle and core thermocurrents move oppositely, the Earth’s crust cools down globally and ice age comes, but if they move unidirectionally then global warming comes. The calculation show that the Earth’s surface can warm up to not more than 10°C. The latter, considering how human factor affects the warming of Earth, is incomparably great. There are calculations that show power of the Earth’s thermocurrents being enough to generate and maintain the Earth’s magnetic field, its modern dynamics and the poles inversion.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pol...Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pollutant movement equation, and the numerical results have also been validated by experimental data. It is shown that the long-shore current velocity and wave set-up increase with the increasing incident wave amplitude and slope steepness of the shore plane ; the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane. In surf zones, the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.展开更多
The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 10...The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 1000 (2000) db in the tropical Pacific derived from the ARGO float position information during the period November 2001 to October 2004 are used to evaluate the intermediate currents of the National Centers for Environmental Prediction reanalysis. To derive reliable velocity information from ARGO float trajectory points, a rigorous quality control scheme is applied, and by virtue of a correction method for reducing the drift error on the surface in obtaining the velocity vectors, their relative errors are less than 25%. Based on the comparisons from the quantitative velocity vectors and from the space-time average currents, some substantial discrepancies are revealed. The first is that the velocities of the reanalysis at mid-depths except near the equator are underestimated relative to the observed velocities by the floats. The average speed difference between NCEP and ARGO values ranges from about -2.3cm s^-1 to -1.8 cm s^-1. The second is that the velocity difference between the ocean model and the observations at 2000 dB seems smaller than that at 1000 dB. The third is that the zonal flow in the reanalysis is too dominant so that some eddies could not be simulated, such as the cyclonic eddy to the east of 160°E between 20°N and 30°N at 2000 dB. In addition, it is noticeable that many floats parking at 1000 dB cannot acquire credible mid-depth velocities due to the time information of their end of ascent (start of descent) on the surface in the trajectory files. Thus, relying on default times of parking, descent and ascent in the metadata files gravely confines their application to measuring mid-depth currents.展开更多
基金supported by the National Key R&D Program of China (Grant No.2022YFA1403203)the National Natural Science Funds for Distinguished Young Scholar (Grant No.52325105)+2 种基金the National Natural Science Foundation of China (Grant Nos.12274411,12241405,52250418,and12404185)the Basic Research Program of the Chinese Academy of Sciences (CAS) Based on Major Scientific Infrastructures (Grant No.JZHKYPT-2021-08)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)。
文摘Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, Bose–Einstein distribution populates magnon states across all energies from opposite eigenmodes, and hence the magnon spin current is largely compensated. Contrary to this common observation,here, we show that magnets with X-type AFM stacking, where opposite magnetic sublattices form orthogonal intersecting chains, support giant magnon spin currents with minimal compensation. Our model Hamiltonian calculations predict magnetic chain locking of magnon spin currents in these X-type magnets, significantly reducing their compensation ratio. In addition, the one-dimensional nature of the chain-like magnetic sublattices enhances magnon spin conductivities surpassing those of two-dimensional ferromagnets and canonical altermagnets. Notably, uncompensated X-type magnets, such as odd-layer antiferromagnets and ferrimagnets, can exhibit magnon spin currents polarized opposite to those expected by their net magnetization. These unprecedented properties of X-type magnets, combined with their inherent advantages resulting from AFM coupling, offer a promising new path for low-power high-performance spintronics.
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金supported by the National Natural Science Foundation of China (42250101)the Macao Foundation. The computation made use of the high-performance computing resources at the center of the MSS data processing and analysis。
文摘Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to characterize F-region currents using magnetic data from the MSS-1(Macao Science Satellite-1) and Swarm satellite missions.Our approach employs a toroidal field representation,utilizing spherical harmonics to capture spatial variations and Fourier series to represent temporal dynamics.Two models,Model-A and Model-B,derived from distinct datasets,are constructed to represent current patterns at altitudes of 450 km and 512 km,respectively.Our models successfully capture the primary spatial structures and seasonal variations of polar field-aligned currents.Additionally,they accurately reproduce the localized inter-hemispheric field-aligned currents observed in mid and low latitudes during solstices,particularly between 14:00 and 16:00 magnetic local times.These findings enhance our understanding of ionospheric F-region currents and contribute to more precise geomagnetic field modeling.
基金the National Natural Science Foundation of China(No.42277138)the National Key Research and Development Program of China(Nos.2024YFF0506803 and 2024YFC2815400)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.202441003 and 202513032)the Shandong Province National-Level Leading Talent Supporting Project(No.2022GJJLJRC-15)the European Commission(Nos.HORIZON MSCA-2024-PF-01,101200637)。
文摘0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability(Harris,2020;Chubarenko et al.,2016).
文摘In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.
文摘The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.
文摘Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual current property in the area in observing dates. Then on the basis of observed data analysis and by employing the split-step method, the paper conducts a numerical simulation of the tidal current field, which can show the M2 tidal constituent tidal wave system, current ellipse distribution, maximum current velocity distribution and time-dependent current field. The calculated results agree well with the observed data, which can on the one hand reflect the basic specificities of temporal and spatial distribution of the M2 tidal constituent current field to some extent, and, on the other hand, offer more information about the hydrodynamic condition. So the paper would provide a scientific basis for the making of sea environment protection plans in the offshore area of Jiaonan under certain conditions.
文摘The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.
文摘Since the beginning of the 20th century,alkaline electrolysis has been used as a proven method for producing hydrogen on a megawatt scale.The existence of parasitic shunt currents in alkaline water electrolysis,which is utilized to produce clean hydrogen,is investigated in this work.Analysis has been done on a 20-cell stack.Steel end plates,bipolar plates,and an electrolyte concentration of 6 M potassium hydroxide are all included in the model.The Butler-Volmer kinetics equations are used to simulate the electrode surfaces.Ohmic losses are taken into consideration in both the electrode and electrolyte phases,although mass transport constraints in the gas phase are not.Using an auxiliary sweep to solve equations,the model maintains an isothermal condition at 85℃ while adjusting the average cell voltage between 1.3 and 1.8 V.The results show that lower shunt currents in the outlet channels as opposed to the intake channels are the result of the electrolyte’s lower effective conductivity in the upper channels,which is brought on by a lower volume fraction of the electrolyte.Additionally,it has been seen that the shunt currents intensify as the stack gets closer to the conclusion.Efficiency is calculated by dividing the maximum energy output(per unit of time)that a fuel cell operating under comparable conditions might produce by the electrical energy needed to generate that output inside the stack.At first,energy efficiency increases due to the rise in coulombic efficiency,peaking around 1400 mA.The subsequent decline after reaching 1400 mA is linked to an increase in stack voltage at elevated current levels.
基金Supported by the National Basic Research Program (973 Program) (No.2007CB411807)the Open Research Program of the CAS Key Laboratory of Tropical Marine Environmental Dynamics (No.LED0404)+1 种基金the Key Project of Chinese Ministry of Education (No.108159)the National Key Technologies R&D Program (No.2007BAC03A06),China
文摘Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and tidal currents in the Beibu Gulf and Qiongzhou Strait are well reproduced.The model results show that the semidiurnal tidal wave propagates eastward from the Beibu Gulf through Qiongzhou Strait,while diurnal tidal waves enter the strait from both the eastern and western sides and interact on the southeast coast of the strait.The formation processes of the residual currents in Qiongzhou Strait in summer (August) and winter (January) are mainly discussed.It is shown that the total residual currents (coupling effect of wind,tide and density) in the strait are westward in both summer and winter.The water volume transported from the east to west into the Beibu Gulf is 0.026 Sv in summer and 0.116 Sv in winter.Numerical experiments indicate that the dominant factor affecting the residual currents in the strait is not the wind stress but the tidal rectification.The westward tide-induced residual current,driven by the tidal rectification,is rather strong in the strait with water volume transport of 0.063 Sv.The wind in summer only reduces the westward tide-induced residual current to a certain extent,and the wind in winter approximately doubles the westward tide-induced residual current through the strait.The density current contributes little to the total residual current in both summer and winter.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFF0719200)the National Natural Science Foundation of China(Grant No.62105011)+3 种基金the French National Research Agency ANR through the UFO project(Grant No.ANR-20-CE090013)the SLAM project(Grant No.ANR-23-CE30-0047)the MAT-PULSE-Lorraine Universitéd’Excellence project(Grant No.ANR-15-IDEX-04-LUE)the France 2030 Government Grants PEPR Electronic EMCOM(Grant No.ANR-22-PEEL-0009)。
文摘Single shot all-optical switching of the magnetization by femtosecond laser pulses in rare-earth transition-metal ferrimagnetic materials is particularly promising for future ultrafast magnetic storage applications.Moreover,ultrafast lasergenerated spin currents appear to play an important role in the switching process.Here,we try to separately detect the spin current from Gd in a Co/Gd bilayer system using terahertz time-domain spectroscopy.To this aim,we use different capping,buffer and embedded layers in order to tune the spin-to-charge and spin-current propagation and identify currents from each of the layers.We attribute the observed THz emission in all layers to the transition metal demagnetization induced spin currents,and detect no contribution from the Gd demagnetization.We attribute this absence of Gd-induced THz signal to the potentially slow demagnetization of Gd,which shift the emission spectra to lower frequencies,below our detection capabilities.These results highlight the limitations in using materials suffering from the so-called critical slowdown for the optimization of spintronic THz emitters.
文摘Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our understanding of tidal characteristics and residuals in this region. The tidal currents in Kemen Channel were identified as the regular semidiurnal and reversing tidal flows, with its behaviour more like standing waves. Moreover, the flood currents in the lower layers were found to be ahead of that in the upper layers and vice versa for ebb tides. The major of tidal ellipse for M2 constituent was found to be larger close to the southern side of the channel, with its incline also increasing toward the south. The signs of M4 constituent were also found mainly nearby the end points of this transect, indicating the importance of nonlinearity in tidal dynamics due to the shallower topography. A two-layer structure was found for the residual currents in Kemen Channel, flowing northeastwardly out of the Bay in upper 20m and southwestwardly into the bay in the lowers. Besides approximate 4.81×10^8 m^3 water exchanges were determined between the Luoyuan Bay and outer seas by the calculation of tidal flux through Kemen Channel.
基金supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAB12B02)Key Technologies Research and Development Program of Tianjin (14ZCZDSF00012)
文摘A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular grids. In the case of anaccurate simulation of the tides and tidal currents in the Bohai Sea, this article focuseson the Yellow River mouth. The type of tides is irregular semi-diurnal and the type oftidal currents is the reciprocating flow, mostly parallel to the coastline. The tide inducedeulerian residual currents are a couple of eddies on each side of the river mouth, withthe anticlockwise on the left side and clockwise on the other side, and both of theeddies are enhanced by the Yellow River runoff. Two patterns of shear fronts areidentified at the conversion between the flood and ebb tidal phase. The results suggestthat the shear fronts be generated in the shallow water because the tidal phase of thecoastal area is ahead of the deeper seaward area, then moves seaward and finallydisappears 1-2 hours later.
基金supported by the Ministry of Science and Technology (MOST) of China(Grant No.2011CB403504)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos.KZCX2-EW-208 and KZCX2-YW-Q11-02)the National Natural Science Foundationof China(Grant No.41076009)
文摘Hydrographic and direct current measurements were made in the Eastern Equatorial Indian Ocean in May 2010 and April 2011 as part of the Eastern Indian Ocean Cruises(EIOC) organized by the South China Sea Institute of Oceanology(SCSIO).Analyses of the shipdrift Acoustic Doppler Current Profiler(ADCP) data indicate that the equatorial currents observed in May 2010 are characterized by a strongly eastward surface current(Wyrtki Jets,WJs) with a maximum velocity of 0.9 m s 1,while that observed in April 2011 is weak and without a consistent direction.The strongly eastward WJ transports the surface water eastward,resulting in a deeper upper mixed layer,as shown in the temperature and salinity profiles.However,it was found that the Equatorial Undercurrent(EUC) in the Eastern Indian Ocean is strong in April 2011 and weak in May 2010.The EUC was located approximately at the position of the thermocline,and it had higher salinity(up to approximately 35.5 psu) than the upper and lower waters.
基金the Major State Basic Research Program of China under contact No.G 1999043805.
文摘On the basis of the current measurements at 200,500 and 800 m from moored current meters with the time series data from March 17 to April 15 at the mooring station (20°49′57″N, 120°48′ 12″E) and the hydrographic data obtained in the Luzon Strait during the spring of 2002 cruise, the circulation in the investigated area is computed by using the modified inverse method. The major observed results are as follows: (1) the average velocity and the flow direction in the observing days are (47.4 cm/s, 346°) at the 200 m level. The average velocity in the observing days is (20.3 cm/s, 350? at the 500 m level. These mean that the Kuroshio intrudes into the South Chin Sea to flow northwestward through the Luzon Strait at 200 and 500 m levels. (2) The average velocity in the observing days is (1.2 cm/s, 35°) at the 800 m level, i. e., its direction is northeastward. This means that the flow condition at the 800 m level very differs from mat at the 200 and 500 m levels. (3) There is the high density and cold water (HDCW) in the middle of western part of in the investigated region, and its center is located near the hydrological station 3 at Section A. (4) There is the lower density and warm water (LDWW) in the southeastern part of investigated region. (5) The currents in April 2002 are stronger than those in March 2002.The major computed results are as follows: (1) The northwestward and southeastward VTs through Section B are 32.48×106 m3/s (inclusive of VT of anticyclonic eddy) and 3.34×106m3/s, respectively. The net northwestward VT through Section B in the investigated area is about 29.14×106 m3/s. (2) The eastern and western VTs through Section A are about 16.71×106 and 8.57×106 m3/s, respectively. Thus, the net eastward VT through Section A is about 8.14×106 m3/s. (3) The net northward VT through Section M is about 24.68×106 m3/s. (4) After about 24.68×106 m3/s flows through Section M, most of it, about 16.54×106 m3/s, flows northward through the eastern part of Section C and then flows northward into the region east Taiwan Island. The other part of it, about 8.14×106 m3/s, branches out from the main Kuroshio and then flows meanderingly through the western part of Section C. Thus, the Kuroshio has the two cores of current at Section C. (5) The direction of the computed current near the mooring station M agrees with the direction of the current measurements at 200 and 500 m from moored current meters, i.e., their directions both are northwestward. (6) About 3.34×106 m3/s of the South Chin Sea water probably flows slowly from the northwest to the southeast in the layer below 550 m at the western part of Section B.
文摘The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transverse electric fields. It has been known as the unipolar field-effect transistor for 55-years since Shockley's 1952 invention,because the electron-current theory inevitably neglected the hole current from over-specified internal and boundary conditions, such as the electrical neutrality and the constant hole-electrochemical-potential, resulting in erroneous solutions of the internal and terminal electrical characteristics from the electron channel current alone, which are in gross error when the neglected hole current becomes comparable to the electron current, both in subthreshold and strong inversion. This report presents the general theory, that includes both electron and hole channels and currents. The rectangular ( x, y, z) parallelepiped transistors,uniform in the width direction (z-axis),with one or two MOS gates on thin and thick,and pure and impure base, are used to illustrate the two-dimensional effects and the correct internal and boundary conditions for the electric and the electron and hole electrochemical potentials. Complete analytical equations of the DC current-voltage characteristics of four common MOS transistor structures are derived without over-specification: the 1-gate on semi-infinite-thick impure-base (the traditional bulk transistor), the 1-gate on thin impure-silicon layer over oxide-insulated silicon bulk (SOI) ,the 1-gate on thin impure-silicon layer deposited on insulating glass (SOI TFT), and the 2-gates on thin pure-base (FinFETs).
文摘The geotemperature gradient is considered as taking main part in generating the Earth’s magnetic field. It is shown that geotemperature gradient functions as a generator of both nuclear and mantle thermoelectrical currents thanks to the great temperature difference between the core and the mantle. The movement of those currents is close to the radial direction towards the Earth’s crust. However, the nuclear thermocurrents movement tends to cyclically change into opposite one. If the mantle and core thermocurrents move oppositely, the Earth’s crust cools down globally and ice age comes, but if they move unidirectionally then global warming comes. The calculation show that the Earth’s surface can warm up to not more than 10°C. The latter, considering how human factor affects the warming of Earth, is incomparably great. There are calculations that show power of the Earth’s thermocurrents being enough to generate and maintain the Earth’s magnetic field, its modern dynamics and the poles inversion.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金The National Basic Research ("973") Program of China under contract No.2005CB724202the National Natural Science Foundation of China under contract Nos.50709004 and 50779006.
文摘Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pollutant movement equation, and the numerical results have also been validated by experimental data. It is shown that the long-shore current velocity and wave set-up increase with the increasing incident wave amplitude and slope steepness of the shore plane ; the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane. In surf zones, the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.
基金This research is supported by Natural Science Foundation of China(Contract No.40437017 and 40225015).
文摘The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 1000 (2000) db in the tropical Pacific derived from the ARGO float position information during the period November 2001 to October 2004 are used to evaluate the intermediate currents of the National Centers for Environmental Prediction reanalysis. To derive reliable velocity information from ARGO float trajectory points, a rigorous quality control scheme is applied, and by virtue of a correction method for reducing the drift error on the surface in obtaining the velocity vectors, their relative errors are less than 25%. Based on the comparisons from the quantitative velocity vectors and from the space-time average currents, some substantial discrepancies are revealed. The first is that the velocities of the reanalysis at mid-depths except near the equator are underestimated relative to the observed velocities by the floats. The average speed difference between NCEP and ARGO values ranges from about -2.3cm s^-1 to -1.8 cm s^-1. The second is that the velocity difference between the ocean model and the observations at 2000 dB seems smaller than that at 1000 dB. The third is that the zonal flow in the reanalysis is too dominant so that some eddies could not be simulated, such as the cyclonic eddy to the east of 160°E between 20°N and 30°N at 2000 dB. In addition, it is noticeable that many floats parking at 1000 dB cannot acquire credible mid-depth velocities due to the time information of their end of ascent (start of descent) on the surface in the trajectory files. Thus, relying on default times of parking, descent and ascent in the metadata files gravely confines their application to measuring mid-depth currents.