Current--voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow c...Current--voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current--voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1~kHz and resonance (60.1~kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current--voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50572006, 50802008 and 50874010)the Natural Science Foundation of Beijing, China (Grant No. 2073026)+2 种基金the Program for New Century Excellent Talents in University(Grant No. 20060420152)Scholars and Innovative Research Team in University (Grant No. 0509)Alex A. Volinsky wouldlike to acknowledge support from NSF (Grant No. CMMI-0600266)
文摘Current--voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current--voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1~kHz and resonance (60.1~kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current--voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors.