Aim at improving the stability of the Short-circuiting Gas Metal Arc Welding (GMAW-S) process for the enhanced speed usage, effects of current waveform parameters during short-term on the welding stability have been...Aim at improving the stability of the Short-circuiting Gas Metal Arc Welding (GMAW-S) process for the enhanced speed usage, effects of current waveform parameters during short-term on the welding stability have been investigated by experimental method. The welding power source used for the research is an inverter with a special current waveform control. It is shown that the spatter decreases at first then increases with each increase of the low current period, current increase rate and the maximum current limit. The test results are provided for welding of 1 mm and 3 mm mild steel at speed of 1.2 m/min. The stable GMA W-S process under high speed welding condition has been achieved by optimizing the parameters.展开更多
A simulation system used in the arc welding short circuit transfer process and current waveform control process was developed in this paper. The simulation results are basically consistent with welding technical exper...A simulation system used in the arc welding short circuit transfer process and current waveform control process was developed in this paper. The simulation results are basically consistent with welding technical experiments. The simulation system can be used to simulate and test the current waveform control parameters with welding variables. By this simulation system, the influence regularities of the current waveform control parameters in the CO 2 arc welding droplet short circuit transfer process can be got. Moreover, the basic mode of real time current waveform control can be also established by the simulation testing.展开更多
To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signa...To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signal is detected in realtime to characterize the keyhole size and dimension. The welding current waveform for controlled pulse key-holing strategy is implemented, and two slow-decreasing slopes are added at the dropping point from peak current to base current to further reduce both heat input and arc force so that the controllability of keyhole dynamics is improved. Two kinds of PAW tests are conducted, anti the different parameters of the controlled pulse current and the relevant efflux plasma voltage are measured in real-time to investigate ihe effects of welding current waveform parameters on the key-holing condition.展开更多
Compared with the conventionally used i=iosinωt alternating current, using asymmetric triangular and pulse wave as input signals can greatly enhance the incision's sensitivity of 'dE/dt-E'oscillogram.
为使对换流阀工作状态的控制更加精确、抑制换相失败,提出了一种基于多分支多输入多输出(Multiple input multiple output,MIMO)深度学习的高压直流输电(Line commutated converter high voltage direct current,LCC-HVDC)换流器阀电流...为使对换流阀工作状态的控制更加精确、抑制换相失败,提出了一种基于多分支多输入多输出(Multiple input multiple output,MIMO)深度学习的高压直流输电(Line commutated converter high voltage direct current,LCC-HVDC)换流器阀电流波形反演方案。对现行实际工程中常用的基于差流换相失败的检测方案进行仿真分析,发现检测结果存在滞后性。阀电流波形的反演模型,其输入特征量为三相交流电流、输出量为6个阀电流,属于MIMO的场景。为提取更多特征信息,基于Inception-ResNet结构、采用多种不同尺寸的卷积,设计多分支MIMO深度学习的换流器阀电流反演模型,并以三相电流作为模型输入,6个阀电流作为输出量,对多分支MIMO模型进行训练。最后,对阀电流的波形进行预测反演。仿真结果表明,多分支MIMO模型对阀电流波形的反演具有较好的适用性,反演结果的相关系数在0.9836以上、平均绝对误差在0.1284以下、且均方误差在0.0286以内,误差变化程度较低。展开更多
由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段...由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段定位的方法。首先,针对SNOP的典型控制策略,分析FDN的短路故障特征。其次,计算配电网中不同故障位置电流正序分量的Tanimoto系数,通过对比不同位置的电流正序分量波形相似性,构建FDN短路故障定位判据,并通过Teager能量算子(Teager energy operation,TEO)实现故障时刻的精确定位,利用智能配电终端(smart terminal unit,STU)传递信息。最后,通过建模仿真对所提方法进行分析验证,结果表明该方法能够对故障区段进行准确定位,不受故障位置、故障类型、过渡电阻、采样频率及通信延时等因素的影响,验证了该方法的可行性与有效性。展开更多
A generalized mathematical model of human body current threshold for perception was established and the current flowing through human body could be arbitrary cyclical waveforms.The relationship between human body curr...A generalized mathematical model of human body current threshold for perception was established and the current flowing through human body could be arbitrary cyclical waveforms.The relationship between human body current threshold for perception and current frequency, true root mean square(RMS) value and influence factor was described.A test system was established based on electroencephalogram(EEG) to study the relationship between human body current threshold for perception and current waveform, frequency ...展开更多
Structure of main air discharging switch and a crowbar TVS (triggered vacuum switch) are designed and their triggering characteristics are investigated. The experimental results showed that for TVS the operating vol...Structure of main air discharging switch and a crowbar TVS (triggered vacuum switch) are designed and their triggering characteristics are investigated. The experimental results showed that for TVS the operating voltage range is from 1.3 kV to 120 kV, its maximum delay time is 400 ns and its jitter is 4-10 ns. Based on these results the crowbar 10/350μs (i.e., with a front time of 10μs and a duration of 350 μs) pulse current circuit and its controlling circuit are designed. With a 10μF stored capacitor C and a 6 μF waveform forming induction, a pulse current is generated with a maximum of 100 kA, front time of 10 ns and duration of 350μs. This pulse waveform can be used for testing SPD (surge protective devices).展开更多
In order to prepare electroformed nickel with excellent properties,the effect of different waveforms on microstructure and mechanical properties was investigated by optical microscopy(OM),X-ray diffraction(XRD) and te...In order to prepare electroformed nickel with excellent properties,the effect of different waveforms on microstructure and mechanical properties was investigated by optical microscopy(OM),X-ray diffraction(XRD) and tensile test,respectively.The results show that the samples are composed of micron columnar grains with high-density nanoscale coherent twin boundaries which are parallel to the growth plane.The tensile strength and elongation display opposite tendency with the increase in current density when direct current(DC) electroforming was applied.However,under the condition of pulse current(unidirectional,bidirectional) electroforming,the change regulation of tensile strength and elongation is close while cathode(peak,positive peak) current density increases.XRD results show that electroformed nickel layers with high purity are all fcc crystal configuration under different conditions of the current waveform.The nickel layers formed under bidirectional pulse current behave superior global performance with tensile strength of 692.0 MPa and elongation of 27.6 %.展开更多
文摘Aim at improving the stability of the Short-circuiting Gas Metal Arc Welding (GMAW-S) process for the enhanced speed usage, effects of current waveform parameters during short-term on the welding stability have been investigated by experimental method. The welding power source used for the research is an inverter with a special current waveform control. It is shown that the spatter decreases at first then increases with each increase of the low current period, current increase rate and the maximum current limit. The test results are provided for welding of 1 mm and 3 mm mild steel at speed of 1.2 m/min. The stable GMA W-S process under high speed welding condition has been achieved by optimizing the parameters.
文摘A simulation system used in the arc welding short circuit transfer process and current waveform control process was developed in this paper. The simulation results are basically consistent with welding technical experiments. The simulation system can be used to simulate and test the current waveform control parameters with welding variables. By this simulation system, the influence regularities of the current waveform control parameters in the CO 2 arc welding droplet short circuit transfer process can be got. Moreover, the basic mode of real time current waveform control can be also established by the simulation testing.
基金Acknowledgement The authors are grateful to the financial support for this research from the National Natural Science Foundation of China (Key Program Grant No. 50936003).
文摘To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signal is detected in realtime to characterize the keyhole size and dimension. The welding current waveform for controlled pulse key-holing strategy is implemented, and two slow-decreasing slopes are added at the dropping point from peak current to base current to further reduce both heat input and arc force so that the controllability of keyhole dynamics is improved. Two kinds of PAW tests are conducted, anti the different parameters of the controlled pulse current and the relevant efflux plasma voltage are measured in real-time to investigate ihe effects of welding current waveform parameters on the key-holing condition.
文摘Compared with the conventionally used i=iosinωt alternating current, using asymmetric triangular and pulse wave as input signals can greatly enhance the incision's sensitivity of 'dE/dt-E'oscillogram.
文摘为使对换流阀工作状态的控制更加精确、抑制换相失败,提出了一种基于多分支多输入多输出(Multiple input multiple output,MIMO)深度学习的高压直流输电(Line commutated converter high voltage direct current,LCC-HVDC)换流器阀电流波形反演方案。对现行实际工程中常用的基于差流换相失败的检测方案进行仿真分析,发现检测结果存在滞后性。阀电流波形的反演模型,其输入特征量为三相交流电流、输出量为6个阀电流,属于MIMO的场景。为提取更多特征信息,基于Inception-ResNet结构、采用多种不同尺寸的卷积,设计多分支MIMO深度学习的换流器阀电流反演模型,并以三相电流作为模型输入,6个阀电流作为输出量,对多分支MIMO模型进行训练。最后,对阀电流的波形进行预测反演。仿真结果表明,多分支MIMO模型对阀电流波形的反演具有较好的适用性,反演结果的相关系数在0.9836以上、平均绝对误差在0.1284以下、且均方误差在0.0286以内,误差变化程度较低。
文摘由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段定位的方法。首先,针对SNOP的典型控制策略,分析FDN的短路故障特征。其次,计算配电网中不同故障位置电流正序分量的Tanimoto系数,通过对比不同位置的电流正序分量波形相似性,构建FDN短路故障定位判据,并通过Teager能量算子(Teager energy operation,TEO)实现故障时刻的精确定位,利用智能配电终端(smart terminal unit,STU)传递信息。最后,通过建模仿真对所提方法进行分析验证,结果表明该方法能够对故障区段进行准确定位,不受故障位置、故障类型、过渡电阻、采样频率及通信延时等因素的影响,验证了该方法的可行性与有效性。
基金Supported by the Ministry of Science and Technology of China (No. NCSTE-2006-JKZX-167)Beijing Key Laboratory (Measurement and Control of Electro-mechanical Systems) (No. 82063005)
文摘A generalized mathematical model of human body current threshold for perception was established and the current flowing through human body could be arbitrary cyclical waveforms.The relationship between human body current threshold for perception and current frequency, true root mean square(RMS) value and influence factor was described.A test system was established based on electroencephalogram(EEG) to study the relationship between human body current threshold for perception and current waveform, frequency ...
基金supported by the New Century Talent Foundation of Ministry of Education of China (NCET-08-0438)
文摘Structure of main air discharging switch and a crowbar TVS (triggered vacuum switch) are designed and their triggering characteristics are investigated. The experimental results showed that for TVS the operating voltage range is from 1.3 kV to 120 kV, its maximum delay time is 400 ns and its jitter is 4-10 ns. Based on these results the crowbar 10/350μs (i.e., with a front time of 10μs and a duration of 350 μs) pulse current circuit and its controlling circuit are designed. With a 10μF stored capacitor C and a 6 μF waveform forming induction, a pulse current is generated with a maximum of 100 kA, front time of 10 ns and duration of 350μs. This pulse waveform can be used for testing SPD (surge protective devices).
基金financially supported by the Aviation Science Foundation,China (No.2012ZE51058)。
文摘In order to prepare electroformed nickel with excellent properties,the effect of different waveforms on microstructure and mechanical properties was investigated by optical microscopy(OM),X-ray diffraction(XRD) and tensile test,respectively.The results show that the samples are composed of micron columnar grains with high-density nanoscale coherent twin boundaries which are parallel to the growth plane.The tensile strength and elongation display opposite tendency with the increase in current density when direct current(DC) electroforming was applied.However,under the condition of pulse current(unidirectional,bidirectional) electroforming,the change regulation of tensile strength and elongation is close while cathode(peak,positive peak) current density increases.XRD results show that electroformed nickel layers with high purity are all fcc crystal configuration under different conditions of the current waveform.The nickel layers formed under bidirectional pulse current behave superior global performance with tensile strength of 692.0 MPa and elongation of 27.6 %.