Traumatic brain injury(TBI)triggers liver inflammation:TBI is a serious pathology affecting around 10 million people annually,being a persistent public health and medical problem Forceful impact while playing sport...Traumatic brain injury(TBI)triggers liver inflammation:TBI is a serious pathology affecting around 10 million people annually,being a persistent public health and medical problem Forceful impact while playing sports,falls,physical assault,or traffic accidents are common causes of head injury.展开更多
Transport of an underdamped Brownian particle in a one-dimensional asymmetric deformable potential is investigated in the presence of both an ac force and a static force,respectively.From numerical simulations,we obta...Transport of an underdamped Brownian particle in a one-dimensional asymmetric deformable potential is investigated in the presence of both an ac force and a static force,respectively.From numerical simulations,we obtain the current average velocity.The current reversals and the absolute negative mobility are presented.The increasing of the deformation of the potential can cause the absolute negative mobility to be suppressed and even disappear.When the static force is small,the increase of the potential deformation suppresses the absolute negative mobility.When the force is large,the absolute negative mobility disappears.In particular,when the potential deformation is equal to0.015,the two current reversals present with the increasing of the force.Remarkably,when the potential deformation is small,there are three current reversals with the increasing of the friction coefficient and the average velocity presents a oscillation behavior.展开更多
The ocean general circulation model for the earth simulator(OFES) products is applied to estimate the transports of the Mindanao Current(MC) and the Mindanao undercurrent(MUC) and explore the relation between th...The ocean general circulation model for the earth simulator(OFES) products is applied to estimate the transports of the Mindanao Current(MC) and the Mindanao undercurrent(MUC) and explore the relation between them on seasonal scale. In general, the MUC is composed of the lower part of the Southern Pacific Tropical Water(SPTW)and Antarctic Intermediate Water(AAIW). While the deep northward core below 1 500 m is regarded as a portion of MUC. Both salinity and potential density restrictions become more reasonable to estimate the transports of MC/MUC as the properties of water mass having been taken into consideration. The climatological annual mean transport of MC is(37.4±5.81)×10~6 m^3/s while that of MUC is(23.92±6.47)×10~6 m^3/s integrated between 26.5 σ_θ and 27.7 σ_θ, and(17.53±5.45)×10~6 m^3/s integrated between 26.5 σ_θ and 27.5 σ_θ in the OFES. The variations of MC and MUC have good positive correlation with each other on the seasonal scale: The MC is stronger in spring and weaker in fall, which corresponds well with the MUC, and the correlation coefficient of them is 0.67 in the OFES.The same variations are also appeared in hybrid coordinate ocean model(HYCOM) results. Two sensitive experiments based on HYCOM are conducted to explore the relation between MC and MUC. The MUC(26.5〈σ_θ〈27.7) is strengthening as the MC increases with the enhancement of zonal wind field. It is shown,however, that the main part of the increasement is the deeper northward high potential density water(HPDW),while the AAIW almost remains stable, SPTW decreases, and vice versa.展开更多
In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spac...In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spacecraft wake,and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit.The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft.By increasing the electron current collection area or background electron temperature,the spacecraft will float at a lower electric potential with respect to the surrounding plasma.However,the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft.The emission of the photocurrent from the spacecraft surface,which compensates for the electrons collected from background plasma,causes the floating potential to increase.The shape of the spacecraft is also an important factor influencing the floating potential.展开更多
Al-Mg-Mn-Sc-Zr alloys with excellent weldability have emerged as ideal candidates for aerospace applications.Currently,the investigations on the corrosion behavior of alloys under tungsten inert gas(TIG)welding condit...Al-Mg-Mn-Sc-Zr alloys with excellent weldability have emerged as ideal candidates for aerospace applications.Currently,the investigations on the corrosion behavior of alloys under tungsten inert gas(TIG)welding conditions are insufficient.Here,the stress corrosion cracking(SCC)behavior of base metal(BM)and weld zone(WZ)of TIG welded Al-Mg-Mn-Sc-Zr alloys was investigated by using pre-cracked compact tensile samples immersed in 3.5%NaCl solution.The direct current potential drop(DCPD)method was used to record the crack propagation.The microstructure and fracture morphology of different regions of TIG welded joints were studied by SEM,EBSD and TEM,and the SCC crack propagation mechanism of BM and WZ was analyzed.The results demonstrated that the critical stress intensity factor for stress corrosion cracking(K_(ⅠSCC))of BM and WZ was 7.05 MPa·m_(1/2) and 11.79 MPa·m_(1/2),respectively.Then,the crack propagation rate of BM was faster than that of WZ,and BM was more susceptible to SCC than WZ.Additionally,the fracture mode of the BM mainly exhibited transgranular fracture,while the fracture mode of the WZ mainly exhibited intergranular and transgranular mixed fracture.Moreover,SCC crack propagation was attributed to the combined effect of anodic dissolution and hydrogen embrittlement.This study will provide experimental and theoretical basis for the wide application of TIG welded Al-Mg-Mn-Sc-Zr alloys in aerospace.展开更多
Cortical spreading depression(CSD)is a pathophysiological phenomenon.There are sufficient evidences to prove that CSD plays an important role in some neurological disorders.However,exact mechanisms of its initiation a...Cortical spreading depression(CSD)is a pathophysiological phenomenon.There are sufficient evidences to prove that CSD plays an important role in some neurological disorders.However,exact mechanisms of its initiation and propagation are still unclear.Previous studies showed that glutamate receptors could be concerned with CSD,but those studies were mostly performed oriented to ionotropic glutamate receptors(iGluRs).There is relatively little report about effects of metabotropic glutamate receptors(mGluRs)on CSD.Here,we applied optical intrinsic signal imaging(OISI)combined with direct current(DC)potential recording to examine influences of some mGluRs antagonist(or agonist)on CSD propagation in rat’s brain,to indirectly validate actions of some mGluRs on CSD.We found that N-acetyl-l-aspartyl-l-glutamate(NAAG,an agonist at mGluR3)inhibited the propagation of CSD,and the inhibition was gradually developed with time.However,6-methyl-2-phenylethynyl-pyridine(MPEP,an antagonist of mGluR5)did not produce any significant alterations with the CSD propagation.Our findings suggest that mGluR3 could play an important role in the CSD propagation,but the activity of mGluR5 was comparatively weak.These findings can help to understand the propagation mechanism of CSD,and consider the therapy of some neurological diseases involved with CSD.展开更多
A physical and explicit surface potential model for undoped symmetric double-gate polysilicon thinfilm transistors has been derived based on an effective charge density approach of Poisson's equation with both expone...A physical and explicit surface potential model for undoped symmetric double-gate polysilicon thinfilm transistors has been derived based on an effective charge density approach of Poisson's equation with both exponential deep and tail state terms included. The proposed surface potential calculation is single-piece and eliminatestheregionalapproach.Modelpredictionsarecomparedtonumericalsimulationswithcloseagreement,having absolute error in the millivolt range. Furthermore, expressions of the drain current are given for a wide range of operation regions, which have been justified by thorough comparisons with experimental data.展开更多
The deep dielectric charging effect monitor(DDCEM)has been designed to study the internal charging effect by measuring the charging currents and potentials inside the spacecraft.It is equipped on three Chinese navigat...The deep dielectric charging effect monitor(DDCEM)has been designed to study the internal charging effect by measuring the charging currents and potentials inside the spacecraft.It is equipped on three Chinese navigation satellites in a circular medium earth orbit(MEO)with 22000 km average height and 55°inclinations.Numerical simulation based on the Geant4-RIC method was used to evaluate the data of DDCEM.The data during May to November 2019 on one of the three satellites show that the charging currents of DDCEM were negatively enhanced when the satellite moved into the outer radiation belt.The currents reached the negative maximum during a significant electron enhancement in September 2019.Positive currents were also detected besides negative currents that were caused by the deposition of electrons in the sensor.The causation of positive currents in the space environment may be that the low-energy electrons cannot penetrate the satellite skin and make it charging to negative potential,the reference ground of DDCEM that is connected to the satellite skin drops below zero by the low-energy electrons so that the output currents turn to positive.Ground experiment was used to simulate the causation of positive currents and the result verified our theory.展开更多
文摘Traumatic brain injury(TBI)triggers liver inflammation:TBI is a serious pathology affecting around 10 million people annually,being a persistent public health and medical problem Forceful impact while playing sports,falls,physical assault,or traffic accidents are common causes of head injury.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.11575064 and 11175067the Natural Science Foundation of Guangdong Province under Grant No.2016A030313433
文摘Transport of an underdamped Brownian particle in a one-dimensional asymmetric deformable potential is investigated in the presence of both an ac force and a static force,respectively.From numerical simulations,we obtain the current average velocity.The current reversals and the absolute negative mobility are presented.The increasing of the deformation of the potential can cause the absolute negative mobility to be suppressed and even disappear.When the static force is small,the increase of the potential deformation suppresses the absolute negative mobility.When the force is large,the absolute negative mobility disappears.In particular,when the potential deformation is equal to0.015,the two current reversals present with the increasing of the force.Remarkably,when the potential deformation is small,there are three current reversals with the increasing of the friction coefficient and the average velocity presents a oscillation behavior.
基金The program of Global Change and Air-Sea Interaction under contract No.GASI-03-01-01-05the National Basic Research Program of China under contract No.2012CB417404+1 种基金the Research Project of Chinese Ministry of Education under contract No.113041Athe National Natural Science Foundation of China under contract Nos 41276011,41521091 and U1406401
文摘The ocean general circulation model for the earth simulator(OFES) products is applied to estimate the transports of the Mindanao Current(MC) and the Mindanao undercurrent(MUC) and explore the relation between them on seasonal scale. In general, the MUC is composed of the lower part of the Southern Pacific Tropical Water(SPTW)and Antarctic Intermediate Water(AAIW). While the deep northward core below 1 500 m is regarded as a portion of MUC. Both salinity and potential density restrictions become more reasonable to estimate the transports of MC/MUC as the properties of water mass having been taken into consideration. The climatological annual mean transport of MC is(37.4±5.81)×10~6 m^3/s while that of MUC is(23.92±6.47)×10~6 m^3/s integrated between 26.5 σ_θ and 27.7 σ_θ, and(17.53±5.45)×10~6 m^3/s integrated between 26.5 σ_θ and 27.5 σ_θ in the OFES. The variations of MC and MUC have good positive correlation with each other on the seasonal scale: The MC is stronger in spring and weaker in fall, which corresponds well with the MUC, and the correlation coefficient of them is 0.67 in the OFES.The same variations are also appeared in hybrid coordinate ocean model(HYCOM) results. Two sensitive experiments based on HYCOM are conducted to explore the relation between MC and MUC. The MUC(26.5〈σ_θ〈27.7) is strengthening as the MC increases with the enhancement of zonal wind field. It is shown,however, that the main part of the increasement is the deeper northward high potential density water(HPDW),while the AAIW almost remains stable, SPTW decreases, and vice versa.
基金supported by National Natural Science Foundation of China(No.11105063)
文摘In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spacecraft wake,and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit.The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft.By increasing the electron current collection area or background electron temperature,the spacecraft will float at a lower electric potential with respect to the surrounding plasma.However,the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft.The emission of the photocurrent from the spacecraft surface,which compensates for the electrons collected from background plasma,causes the floating potential to increase.The shape of the spacecraft is also an important factor influencing the floating potential.
基金Project (2023GK1080) supported by the Major Special Projects of Hunan Province of China。
文摘Al-Mg-Mn-Sc-Zr alloys with excellent weldability have emerged as ideal candidates for aerospace applications.Currently,the investigations on the corrosion behavior of alloys under tungsten inert gas(TIG)welding conditions are insufficient.Here,the stress corrosion cracking(SCC)behavior of base metal(BM)and weld zone(WZ)of TIG welded Al-Mg-Mn-Sc-Zr alloys was investigated by using pre-cracked compact tensile samples immersed in 3.5%NaCl solution.The direct current potential drop(DCPD)method was used to record the crack propagation.The microstructure and fracture morphology of different regions of TIG welded joints were studied by SEM,EBSD and TEM,and the SCC crack propagation mechanism of BM and WZ was analyzed.The results demonstrated that the critical stress intensity factor for stress corrosion cracking(K_(ⅠSCC))of BM and WZ was 7.05 MPa·m_(1/2) and 11.79 MPa·m_(1/2),respectively.Then,the crack propagation rate of BM was faster than that of WZ,and BM was more susceptible to SCC than WZ.Additionally,the fracture mode of the BM mainly exhibited transgranular fracture,while the fracture mode of the WZ mainly exhibited intergranular and transgranular mixed fracture.Moreover,SCC crack propagation was attributed to the combined effect of anodic dissolution and hydrogen embrittlement.This study will provide experimental and theoretical basis for the wide application of TIG welded Al-Mg-Mn-Sc-Zr alloys in aerospace.
基金This work is supported by the National High Technology Research and Development Program of China(Grant No.2007AA02Z303)the National Natural Science Foundation of China(Grant No.30970964,30801482,30800313)+1 种基金the Program for New Century Excellent Talents in University(Grant No.NCET-08-0213)the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20070487058,20090142110054).
文摘Cortical spreading depression(CSD)is a pathophysiological phenomenon.There are sufficient evidences to prove that CSD plays an important role in some neurological disorders.However,exact mechanisms of its initiation and propagation are still unclear.Previous studies showed that glutamate receptors could be concerned with CSD,but those studies were mostly performed oriented to ionotropic glutamate receptors(iGluRs).There is relatively little report about effects of metabotropic glutamate receptors(mGluRs)on CSD.Here,we applied optical intrinsic signal imaging(OISI)combined with direct current(DC)potential recording to examine influences of some mGluRs antagonist(or agonist)on CSD propagation in rat’s brain,to indirectly validate actions of some mGluRs on CSD.We found that N-acetyl-l-aspartyl-l-glutamate(NAAG,an agonist at mGluR3)inhibited the propagation of CSD,and the inhibition was gradually developed with time.However,6-methyl-2-phenylethynyl-pyridine(MPEP,an antagonist of mGluR5)did not produce any significant alterations with the CSD propagation.Our findings suggest that mGluR3 could play an important role in the CSD propagation,but the activity of mGluR5 was comparatively weak.These findings can help to understand the propagation mechanism of CSD,and consider the therapy of some neurological diseases involved with CSD.
基金Project supported by the National Natural Science Foundation of China(No.61204100)the Guangdong Natural Science Foundation(No.S2013010013088)
文摘A physical and explicit surface potential model for undoped symmetric double-gate polysilicon thinfilm transistors has been derived based on an effective charge density approach of Poisson's equation with both exponential deep and tail state terms included. The proposed surface potential calculation is single-piece and eliminatestheregionalapproach.Modelpredictionsarecomparedtonumericalsimulationswithcloseagreement,having absolute error in the millivolt range. Furthermore, expressions of the drain current are given for a wide range of operation regions, which have been justified by thorough comparisons with experimental data.
基金supported by the National Natural Science Foundation of China (Grant No. 41374181)the Beijing Municipal Natural Science Foundation (Grant No. 3184048)
文摘The deep dielectric charging effect monitor(DDCEM)has been designed to study the internal charging effect by measuring the charging currents and potentials inside the spacecraft.It is equipped on three Chinese navigation satellites in a circular medium earth orbit(MEO)with 22000 km average height and 55°inclinations.Numerical simulation based on the Geant4-RIC method was used to evaluate the data of DDCEM.The data during May to November 2019 on one of the three satellites show that the charging currents of DDCEM were negatively enhanced when the satellite moved into the outer radiation belt.The currents reached the negative maximum during a significant electron enhancement in September 2019.Positive currents were also detected besides negative currents that were caused by the deposition of electrons in the sensor.The causation of positive currents in the space environment may be that the low-energy electrons cannot penetrate the satellite skin and make it charging to negative potential,the reference ground of DDCEM that is connected to the satellite skin drops below zero by the low-energy electrons so that the output currents turn to positive.Ground experiment was used to simulate the causation of positive currents and the result verified our theory.