We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majoran...We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majorana bound state(MBS)is coupled to one lead via a quantum dot with resonant levels.In this device,the nonlocal correlations can be induced in the absence of Majorana energy splitting.We find that the negative differential conductance and giant current noise cross correlation could be induced,due to the interplay between nonlocality of MBSs and dynamical Coulomb blockade effect.This feature may provide a signature for the existence of the MBSs.展开更多
The performance of complementary feeders, running in parallel, can be significantly improved by installing static transfer switches (STSs) at critical locations. We develop the STS control logic, which transfers the...The performance of complementary feeders, running in parallel, can be significantly improved by installing static transfer switches (STSs) at critical locations. We develop the STS control logic, which transfers the critical load from the preferred feeder to the alternate feeder when a voltage sag or a fault occurs on the preferred feeder. A forced commutation technique is proposed and implemented to turn off the preferred feeders' thyristor, thus avoiding cross current to flow and minimizing the transfer time. Simulation results show that the forced commutation technique is more effective as compared to the recently proposed time delay technique for STS operation. Two different feeders, namely New Exchange, the preferred feeder, and Sector 1-10/2, the alternate feeder of Islamabad Electric Supply COmpany (IESCO), Pakistan, have been selected for case studies. The software PSCAD/EMTDC professional package has been used for simulation.展开更多
Sea surface current has a significant influence on electromagnetic(EM) backscattering signals and may constitute a dominant synthetic aperture radar(SAR) imaging mechanism. An effective EM backscattering model for...Sea surface current has a significant influence on electromagnetic(EM) backscattering signals and may constitute a dominant synthetic aperture radar(SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section(NRCS) discrepancies between the model for a coupled wavecurrent fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle,as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12074209 and 12274063)the Fundamental Research Funds for the Central Universities(Grant No.ZYGX2019J100)the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF202008)。
文摘We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majorana bound state(MBS)is coupled to one lead via a quantum dot with resonant levels.In this device,the nonlocal correlations can be induced in the absence of Majorana energy splitting.We find that the negative differential conductance and giant current noise cross correlation could be induced,due to the interplay between nonlocality of MBSs and dynamical Coulomb blockade effect.This feature may provide a signature for the existence of the MBSs.
文摘The performance of complementary feeders, running in parallel, can be significantly improved by installing static transfer switches (STSs) at critical locations. We develop the STS control logic, which transfers the critical load from the preferred feeder to the alternate feeder when a voltage sag or a fault occurs on the preferred feeder. A forced commutation technique is proposed and implemented to turn off the preferred feeders' thyristor, thus avoiding cross current to flow and minimizing the transfer time. Simulation results show that the forced commutation technique is more effective as compared to the recently proposed time delay technique for STS operation. Two different feeders, namely New Exchange, the preferred feeder, and Sector 1-10/2, the alternate feeder of Islamabad Electric Supply COmpany (IESCO), Pakistan, have been selected for case studies. The software PSCAD/EMTDC professional package has been used for simulation.
基金Project supported by the National Natural Science Foundation of China(Grant No.41276187)the Global Change Research Program of China(Grant No.2015CB953901)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province,Chinathe Canadian Program on Energy Research and Developmentthe Canadian World Class Tanker Safety Service Program
文摘Sea surface current has a significant influence on electromagnetic(EM) backscattering signals and may constitute a dominant synthetic aperture radar(SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section(NRCS) discrepancies between the model for a coupled wavecurrent fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle,as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface.