In order to control the lateral motion of a jet trencher which is important for stable trenching operation,the oscillation characteristics of the jet trencher are researched. The jet trencher is simplified into a sing...In order to control the lateral motion of a jet trencher which is important for stable trenching operation,the oscillation characteristics of the jet trencher are researched. The jet trencher is simplified into a single degree of freedom model with restoring and damping force. The nonlinear mathematical model of the trencher laterally oscillating in ocean currents is established,and its approximate analytical solution is obtained.Results show that the analytical solution has small differences with numerical solution based on the fourth-order Runge-Kutta method and can effectively describe the underwater oscillation. A double-loop PID controller is designed to control the lateral motion displacement of the trencher to return to the center of the pipeline route which is effective and robust for the propulsion system.展开更多
Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and swit...Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and switching nature of DC-DC power electronic converters, there is a need for high-performance control strategies. This work summarized the dynamic behavior for the three basic switch-mode DC-DC power converters operating in continuous conduction mode, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> buck, boost, and buck-boost. A controller was designed using loop-shaping based on current-mode control that consists of two feedback loops. A high-gain compensator with wide bandwidth was used in the inner current loop for fast transient response. A proportional-integral controller was used in the outer voltage loop for regulation purposes. A proce</span><span style="font-family:Verdana;">dure was proposed for the parameters of the controller that ensures closed-loop</span><span style="font-family:Verdana;"> stability and output voltage regulation. The design-oriented analysis was applied to the three basic switch-mode DC-DC power converters. Experimental results were obtained for a switching regulator with a boost converter of 150 W, which exhibits non-minimum phase behavior. The performance of the controller was tested for voltage regulation by applying large load changes.展开更多
在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布...在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布谷鸟搜索算法与电导增量法相结合的混合MPPT控制。利用布谷鸟搜索算法快速全局寻优,再使用电导增量法精确定位,实现快速而准确地跟踪最大功率点。储能单元是光储直流微电网的重要组成部分,其输出电流均分、荷电状态(stateof charge, SoC)均衡和直流母线电压稳定是主要控制目标。但电流均分受线路电阻差异的影响,进而影响SoC均衡和直流母线电压稳定,于是设计一种新的电压电流双环控制策略以实现上述目标。该策略在电压外环采用母线电压作为反馈值,在电流内环中设计了基于一致性算法的控制策略,将SoC与指数函数结合并引入加速因子,使得在充放电过程中实现SoC的快速均衡。所提控制策略既不需要下垂控制,也无需二次补偿控制,减轻了通信负担。最后在Matlab/Simulink中搭建直流微电网系统模型,验证所设计新的混合MPPT控制和电压电流双环控制策略的有效性。展开更多
基金Sponsored by the High Technology Ship Research and Program of Ministry of Industry and Information Technology of the People's Republic of China(Grant No.539[2012])the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120073120014)
文摘In order to control the lateral motion of a jet trencher which is important for stable trenching operation,the oscillation characteristics of the jet trencher are researched. The jet trencher is simplified into a single degree of freedom model with restoring and damping force. The nonlinear mathematical model of the trencher laterally oscillating in ocean currents is established,and its approximate analytical solution is obtained.Results show that the analytical solution has small differences with numerical solution based on the fourth-order Runge-Kutta method and can effectively describe the underwater oscillation. A double-loop PID controller is designed to control the lateral motion displacement of the trencher to return to the center of the pipeline route which is effective and robust for the propulsion system.
文摘Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and switching nature of DC-DC power electronic converters, there is a need for high-performance control strategies. This work summarized the dynamic behavior for the three basic switch-mode DC-DC power converters operating in continuous conduction mode, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> buck, boost, and buck-boost. A controller was designed using loop-shaping based on current-mode control that consists of two feedback loops. A high-gain compensator with wide bandwidth was used in the inner current loop for fast transient response. A proportional-integral controller was used in the outer voltage loop for regulation purposes. A proce</span><span style="font-family:Verdana;">dure was proposed for the parameters of the controller that ensures closed-loop</span><span style="font-family:Verdana;"> stability and output voltage regulation. The design-oriented analysis was applied to the three basic switch-mode DC-DC power converters. Experimental results were obtained for a switching regulator with a boost converter of 150 W, which exhibits non-minimum phase behavior. The performance of the controller was tested for voltage regulation by applying large load changes.
文摘在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布谷鸟搜索算法与电导增量法相结合的混合MPPT控制。利用布谷鸟搜索算法快速全局寻优,再使用电导增量法精确定位,实现快速而准确地跟踪最大功率点。储能单元是光储直流微电网的重要组成部分,其输出电流均分、荷电状态(stateof charge, SoC)均衡和直流母线电压稳定是主要控制目标。但电流均分受线路电阻差异的影响,进而影响SoC均衡和直流母线电压稳定,于是设计一种新的电压电流双环控制策略以实现上述目标。该策略在电压外环采用母线电压作为反馈值,在电流内环中设计了基于一致性算法的控制策略,将SoC与指数函数结合并引入加速因子,使得在充放电过程中实现SoC的快速均衡。所提控制策略既不需要下垂控制,也无需二次补偿控制,减轻了通信负担。最后在Matlab/Simulink中搭建直流微电网系统模型,验证所设计新的混合MPPT控制和电压电流双环控制策略的有效性。