This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether ...This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether it is possible to produce qualified UHPFRCC using different curing regimes. A control mix of UHPFRCC is prepared. The mechanical performance and the short-term durability of the UHPFRCC matrix under three curing regimes are studied. In addition, the microstructures of the UHPFRCC matrix with different curing conditions are analyzed by combining scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results explore how different UHPFRCC curing regimes affect its microstructure and how the microstructure affects its macro behavior. Heat and steam curing for 3 d is succeeded to produce the UHPFRCC with nearly the same mechanical properties and durability as those of the 90 d standard curing. However, the heat cured UHPFRCC does not show great resistance to chloride-ion penetration.展开更多
Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under differen...Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under different curing regimes(standard curing, 90 ℃ steam curing, 200 ℃ and 250 ℃ autoclave curing) were investigated by X-ray diffraction and field emission scanning electron microscope equipped with EDAX system. Results showed that the main hydration products in three kinds of hardened pastes under standard curing condition are all C-S-H gels, CH, and AFt. Under 90 ℃ steam curing condition, the main hydration products of cement-silica fume and cement-silica fume-quartz powder are C-S-H gels, whereas those of cement-quartz powder are C-S-H and CH. Under 200 or 250 ℃ autoclave curing condition, no obvious crystallized CH phase is found in hardened pastes of three kinds of blended cement, and C-S-H gels are transformed into one or more crystalline phases such as tobermorite, jennite, and xonotlite. The chemical composition and morphology of these crystalline phases depend on the composition of mixture and autoclave temperature.展开更多
This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC...This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.展开更多
Ethylene-Vinyl Acetate (EVA) redispersible powder and latex were used to modify mortar. Three kinds of curing regimes: standard curing, high temperature curing and freeze-thaw circle curing were adopted to cure the...Ethylene-Vinyl Acetate (EVA) redispersible powder and latex were used to modify mortar. Three kinds of curing regimes: standard curing, high temperature curing and freeze-thaw circle curing were adopted to cure the bonded samples. Bonding strength of EVA modified mortar was tested at 28 days. The development of bonding strengths under all three curing regimes were discussed and compared. The experimental results show that bonding strength increases with the increase of EVA content in mortar. The curing regime used within 28 days is critical according to the bonding strengths values under three curing regimes for different ages. The reasons of that the EVA can improve the bonding strength were analyzed.展开更多
Cement is the most consumed building material in the world.However,cement manufacture is responsible for 5-7%of the world CO_(2)emissions.In this paper,cement was partially replaced by styrene-butadiene rubber(SBR)pol...Cement is the most consumed building material in the world.However,cement manufacture is responsible for 5-7%of the world CO_(2)emissions.In this paper,cement was partially replaced by styrene-butadiene rubber(SBR)polymeric latex in order to reduce cement consumption.Besides,effects of SBR addition on the strength and physical properties of plain mortar exposed to three different curing regimes are presented.Three different curing regimes were applied to the 40×40×160 mm prismatic mortar specimens:(Ⅰ):Specimens were cured in water until the test age(CW),(Ⅱ):after demoulding,specimens were immersed in water for 2 days and kept in ambient temperature until the time of the test(2DWA)and(Ⅲ)involved 2 days of water curing followed by 1 day in an oven at 50℃and subsequentely placing in ambient temperature until the test time(2W1OA).Results showed that combin-ing 2 days of water curing followed by ambient temperature curing(2DWA)along with 3%SBR polymer content showed good performance in terms of compressive strength,water absorption and void content.Moreover,a good performance in terms of flexural strength was observed by combining 2W1OA curing regime with 2%SBR content.However,the detrimental effect of water curing regime(CW)in terms of compressive and flexural strength was also observed with the increase of SBR ratio.展开更多
基金The Scholarship Supported by the China Scholarship Councilthe Technical Research Program from NV Bekaert SA of Belgiumthe National Natural Science Foundation of China(No.50908047)
文摘This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether it is possible to produce qualified UHPFRCC using different curing regimes. A control mix of UHPFRCC is prepared. The mechanical performance and the short-term durability of the UHPFRCC matrix under three curing regimes are studied. In addition, the microstructures of the UHPFRCC matrix with different curing conditions are analyzed by combining scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results explore how different UHPFRCC curing regimes affect its microstructure and how the microstructure affects its macro behavior. Heat and steam curing for 3 d is succeeded to produce the UHPFRCC with nearly the same mechanical properties and durability as those of the 90 d standard curing. However, the heat cured UHPFRCC does not show great resistance to chloride-ion penetration.
基金Funded by the National Natural Science Foundation of China(Nos.51272193,51372183,51072150)Program for New Century Excellent Talents in University(No.NCET-10-0660)the National Key Research Projects(No.2016YFB0303501)
文摘Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under different curing regimes(standard curing, 90 ℃ steam curing, 200 ℃ and 250 ℃ autoclave curing) were investigated by X-ray diffraction and field emission scanning electron microscope equipped with EDAX system. Results showed that the main hydration products in three kinds of hardened pastes under standard curing condition are all C-S-H gels, CH, and AFt. Under 90 ℃ steam curing condition, the main hydration products of cement-silica fume and cement-silica fume-quartz powder are C-S-H gels, whereas those of cement-quartz powder are C-S-H and CH. Under 200 or 250 ℃ autoclave curing condition, no obvious crystallized CH phase is found in hardened pastes of three kinds of blended cement, and C-S-H gels are transformed into one or more crystalline phases such as tobermorite, jennite, and xonotlite. The chemical composition and morphology of these crystalline phases depend on the composition of mixture and autoclave temperature.
基金Funded by the National Natural Science Foundation of China (Nos.U21A20149, 51878003, 51908378)Research Reserve of Anhui Jianzhu University (No.2022XMK01)Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No. 2022AH010017)。
文摘This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.
文摘Ethylene-Vinyl Acetate (EVA) redispersible powder and latex were used to modify mortar. Three kinds of curing regimes: standard curing, high temperature curing and freeze-thaw circle curing were adopted to cure the bonded samples. Bonding strength of EVA modified mortar was tested at 28 days. The development of bonding strengths under all three curing regimes were discussed and compared. The experimental results show that bonding strength increases with the increase of EVA content in mortar. The curing regime used within 28 days is critical according to the bonding strengths values under three curing regimes for different ages. The reasons of that the EVA can improve the bonding strength were analyzed.
文摘Cement is the most consumed building material in the world.However,cement manufacture is responsible for 5-7%of the world CO_(2)emissions.In this paper,cement was partially replaced by styrene-butadiene rubber(SBR)polymeric latex in order to reduce cement consumption.Besides,effects of SBR addition on the strength and physical properties of plain mortar exposed to three different curing regimes are presented.Three different curing regimes were applied to the 40×40×160 mm prismatic mortar specimens:(Ⅰ):Specimens were cured in water until the test age(CW),(Ⅱ):after demoulding,specimens were immersed in water for 2 days and kept in ambient temperature until the time of the test(2DWA)and(Ⅲ)involved 2 days of water curing followed by 1 day in an oven at 50℃and subsequentely placing in ambient temperature until the test time(2W1OA).Results showed that combin-ing 2 days of water curing followed by ambient temperature curing(2DWA)along with 3%SBR polymer content showed good performance in terms of compressive strength,water absorption and void content.Moreover,a good performance in terms of flexural strength was observed by combining 2W1OA curing regime with 2%SBR content.However,the detrimental effect of water curing regime(CW)in terms of compressive and flexural strength was also observed with the increase of SBR ratio.