Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability prese...Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures.展开更多
All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high...All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high-quality CsPbBr3 films still remains a big challenge by solution-process because of the low solubility of the cesium precursor in common solvents.Herein,we report a facile solution-processed approach to prepare high-quality CsPbBr3 perovskite films via a two-step spin-coating method,in which the Cs Br methanol/H2 O mixed solvent solution is spin-coated onto the lead bromide films,followed by an isopropanol-assisted post-treatment to regulate the crystallization process and to control the film morphology.In this fashion,dense and uniform CsPbBr3 films are obtained consisting of large crystalline domains with sizes up to microns and low defect density.The effectiveness of the resulting CsPbBr3 films is further examined in perovskite solar cells(PSCs)with a simplified planar architecture of fluorine–doped tin oxide/compact Ti O2/CsPbBr3/carbon,which deliver a maximum power conversion efficiency of 8.11%together with excellent thermal and humidity stability.The present work offers a simple and effective strategy in fabrication of high-quality CsPbBr3 films for efficient and stable PSCs as well as other optoelectronic devices.展开更多
Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low che...Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low chemical yield hinders their upscale production for practical use.Meanwhile,the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals.Herein,we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent,saving over 95% of the solvent for the unity mass nanocrystal production.The perovskite colloid exhibits record stability upon long-term storage for up to 8 months,preserving a photoluminescence quantum yield of 63% in solid state.Importantly,the colloidal nanosheets show self-assembly behavior upon slow solidification,generating a crack-free thin film in a large area.The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging.Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals,which may inspire the industrial optoelectronic application of large-area perovskite film.展开更多
Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)...Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr_3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr_3 as light absorber, accompanied by using Cu-phthalocyanine(CuPc) as hole transport material(HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.展开更多
Epitaxial high-crystallization film semiconductor heterostructures has been proved to be an effective method to prepare single-crystal films for different functional devices in modern microelectronics,electro-optics,a...Epitaxial high-crystallization film semiconductor heterostructures has been proved to be an effective method to prepare single-crystal films for different functional devices in modern microelectronics,electro-optics,and optoelectronics.With superior semiconducting properties,halide perovskite materials are rising as building blocks for heterostructures.Here,the conformal vapor phase epitaxy of CsPbBr3 on PbS single-crystal films is realized to form the CsPbBr3/PbS heterostructures via a two-step vapor deposition process.The structural characterization reveals that PbS substrates and the epilayer CsPbBr3 have clear relationships:CsPbBr3(110)//PbS(100),CsPbBr3[001]//PbS[001]and CsPbBr3[001]//PbS[010].The absorption and photoluminescence(PL)characteristics of CsPbBr3/PbS heterostructures show the broadband light absorption and efficient photogenerated carrier transfer.Photodetectors based on the heterostructures show superior photoresponsivity of 15 A/W,high detectivity of 2.65×10^(11) Jones,fast response speed of 96 ms and obvious rectification behavior.Our study offers a convenient method for establishing the high-quality CsPbBr3/PbS single-crystal film heterostructures and providing an effective way for their application in optoelectronic devices.展开更多
基金National Key Research and Development Program of China(2023YFA1507602)National Natural Science Foundation of China (22171010, 62174011)。
文摘Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures.
基金financial support by the National Natural Science Foundation of China(21975038,21606039,and 51661135021)the Swiss National Science Foundation(IZLCZ2_170177)+3 种基金the Fundamental Research Funds for the Central Universities(DUT17JC39)the Swedish Foundation for Strategic Research(SSF)the Swedish Energy Agencythe Knut and Alice Wallenberg Foundation。
文摘All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high-quality CsPbBr3 films still remains a big challenge by solution-process because of the low solubility of the cesium precursor in common solvents.Herein,we report a facile solution-processed approach to prepare high-quality CsPbBr3 perovskite films via a two-step spin-coating method,in which the Cs Br methanol/H2 O mixed solvent solution is spin-coated onto the lead bromide films,followed by an isopropanol-assisted post-treatment to regulate the crystallization process and to control the film morphology.In this fashion,dense and uniform CsPbBr3 films are obtained consisting of large crystalline domains with sizes up to microns and low defect density.The effectiveness of the resulting CsPbBr3 films is further examined in perovskite solar cells(PSCs)with a simplified planar architecture of fluorine–doped tin oxide/compact Ti O2/CsPbBr3/carbon,which deliver a maximum power conversion efficiency of 8.11%together with excellent thermal and humidity stability.The present work offers a simple and effective strategy in fabrication of high-quality CsPbBr3 films for efficient and stable PSCs as well as other optoelectronic devices.
基金supported by National Natural Science Foundation of China (Nos. 21805111 and 11405073)Taishan Scholar Fund
文摘Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low chemical yield hinders their upscale production for practical use.Meanwhile,the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals.Herein,we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent,saving over 95% of the solvent for the unity mass nanocrystal production.The perovskite colloid exhibits record stability upon long-term storage for up to 8 months,preserving a photoluminescence quantum yield of 63% in solid state.Importantly,the colloidal nanosheets show self-assembly behavior upon slow solidification,generating a crack-free thin film in a large area.The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging.Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals,which may inspire the industrial optoelectronic application of large-area perovskite film.
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 51675210 and 51675209)the China Postdoctoral Science Foundation (Grant No. 2016M602283)
文摘Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr_3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr_3 as light absorber, accompanied by using Cu-phthalocyanine(CuPc) as hole transport material(HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.
基金This work was supported by the Natural Science Foundation of China(Grant No.11704389)Scientific Equipment Development Project and Youth Innovation Promotion Association Project of Chinese Academy of Sciences.
文摘Epitaxial high-crystallization film semiconductor heterostructures has been proved to be an effective method to prepare single-crystal films for different functional devices in modern microelectronics,electro-optics,and optoelectronics.With superior semiconducting properties,halide perovskite materials are rising as building blocks for heterostructures.Here,the conformal vapor phase epitaxy of CsPbBr3 on PbS single-crystal films is realized to form the CsPbBr3/PbS heterostructures via a two-step vapor deposition process.The structural characterization reveals that PbS substrates and the epilayer CsPbBr3 have clear relationships:CsPbBr3(110)//PbS(100),CsPbBr3[001]//PbS[001]and CsPbBr3[001]//PbS[010].The absorption and photoluminescence(PL)characteristics of CsPbBr3/PbS heterostructures show the broadband light absorption and efficient photogenerated carrier transfer.Photodetectors based on the heterostructures show superior photoresponsivity of 15 A/W,high detectivity of 2.65×10^(11) Jones,fast response speed of 96 ms and obvious rectification behavior.Our study offers a convenient method for establishing the high-quality CsPbBr3/PbS single-crystal film heterostructures and providing an effective way for their application in optoelectronic devices.