期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Synthesis methodologies of conductive 2D conjugated metal-organic frameworks
1
作者 Jinwei Zhang Lipiao Bao Xing Lu 《Chinese Journal of Structural Chemistry》 2025年第4期1-3,共3页
Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic propertie... Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic properties and well-defined topological structure.However,the majority of MOFs are intrinsically dielectric or insulative[1]and typically form as 3D bulk or powder crystals,making them incompatible with complementary metal-oxide semiconductor(CMOS)techniques.In recent years,layer-stacked two-dimensional conjugated MOFs(2D c-MOFs),composed of planar conjugated ligands and linkages[2],have demonstrated high in-plane π conjugation and weak out-of-plane van der Waals interactions,due to their long-range electron delocalization over metal ions and ligands[3].As a result,highly tunable band gaps from semiconductor to conductor,modulable porosity from micropore to macropore and versatile processability into conductive 2D thin films with controllable lateral thickness and domain size are presented,rendering charming potential for applications in(opto-)electronics compared with classic 2D metal oxide,chalcogenide and crystalline polymer materials.To improve interfacial charge-transport and precisely tune the charge extraction and band alignment of 2D c-MOFs in(opto-)electronic devices[4],developing highly efficient synthetic methods of 2D c-MOFs is of utmost importance. 展开更多
关键词 d bulk topological structure electronic properties coordinating inorganic metal ions powder crystalsmaking synthesis methodologies two dimensional conjugated metal organic frameworks organic motifshave
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部