Poly(_(L)-lactide)(PLLA),a leading biodegradable polyester,has demonstrated potential as a sustainable alternative,owing to its excellent biodegradability and rigidity.However,their slow crystallization kinetics and p...Poly(_(L)-lactide)(PLLA),a leading biodegradable polyester,has demonstrated potential as a sustainable alternative,owing to its excellent biodegradability and rigidity.However,their slow crystallization kinetics and poor heat resistance limit their application scope.Recent advances have highlighted that the combination of extensional flow and thermal fields can achieve toughness–stiffness balance,high transparency,and good heat resistance.However,the effect of extensional flow on the post-non-isothermal crystallization of PLLA during heating and the resulting crystalline texture remains unclear.In this study,PLLA with a heterogeneous amorphous structure and oriented polymorph was prepared by extensional flow.The effect of heterogeneous amorphous structures on non-isothermal crystallization kinetics during the heating process was studied by thermal analysis,polarized optical microscopy,infrared spectroscopy,and ex situ/in situ X-ray characterization.These results clearly illustrate that extensional flow enhances the formation of oriented crystalline structures,accelerates non-isothermal crystallization,and modulates the polymorphic composition of PLLA.Moreover,an unexpected dual cold-crystallization behavior is identified in ordered PLLA samples upon extensional flow,which is from the extensional flow-induced heterogeneous amorphous phase into α' phase(low-temperature peak)and the pristine amorphous phase intoαphase(high-temperature peak).The extensional flow primarily promotes the formation of the more perfectαandα'phases,but has a negative effect on the final content ofαphase formed after cold crystallization andα'-to-αphase transformation.The findings of this work advance the understanding of PLLA non-isothermal crystallization after extensional flow and offer valuable guidance for high-performance PLLA upon heat treatment in practical processing.展开更多
Noble metal-based intermetallic compounds(IMCs)with ordered atomic arrangements exhibit remarkable electrocatalytic activity owing to their unique crystal and electronic structures.During the past years,great advance ...Noble metal-based intermetallic compounds(IMCs)with ordered atomic arrangements exhibit remarkable electrocatalytic activity owing to their unique crystal and electronic structures.During the past years,great advance has been made in the development of noble metal-based IMCs.Recently,Lu and coworkers reported ultrathin“amorphous/intermetallic”(A/IMC)heterophase PtPbBi nanosheets(NSs)with a thickness of 2.5±0.3 nm.The oxidative etching effect caused by the coexistence of O_(2)and Br^(-)ions plays a crucial role in the formation of the IMC and unique two-dimensional structure with irregular shapes and curled edges.This study shows that fabricating an A/IMC heterophase structure with a multimetallic composition can effectively enhance the catalytic performances of noble metal-based electrocatalysts.展开更多
Lithium-ion batteries with LiCoO_(2)(LCO)cathodes are widely used in various electronic devices,resulting in a large amount of spent LCO(SLCO).Therefore,there is an urgent need for an efficient technique for recycling...Lithium-ion batteries with LiCoO_(2)(LCO)cathodes are widely used in various electronic devices,resulting in a large amount of spent LCO(SLCO).Therefore,there is an urgent need for an efficient technique for recycling SLCO.However,due to the presence of cobalt oxide with a spinel phase on the surface of highly-degraded LCO,the strong electrostatic repulsion from the transition metal octahedron poses a high Li replenishment barrier,making the regeneration of highly-degraded LCO a challenge.Herein,we propose a structural transformation strategy for reconstructing Li replenishment channels to aid the direct regeneration of highly-degraded LCO.In this approach,ball milling is employed to disrupt the inherent structure of highly-degraded LCO,thereby releasing the internal stress and converting the surface spinel phase into a homogeneous amorphous structure,which promotes Li insertion and regeneration.The regenerated LCO(RLCO)exhibits an outstanding discharge capacity of 179.10 mAh·g^(−1) in the voltage range of 3.0–4.5 V at 0.5 C.The proposed strategy is an effective regeneration approach for highly-degraded LCO,thereby facilitating the efficient recycling of spent lithium-ion battery cathode materials.展开更多
In this study,the structural evolution of SiBCN ceramics during crystallization and its effects on oxidation behavior involving different atomic units or formed phases in amorphous or crystalline SiBCN ceramics were a...In this study,the structural evolution of SiBCN ceramics during crystallization and its effects on oxidation behavior involving different atomic units or formed phases in amorphous or crystalline SiBCN ceramics were analyzed.The amorphous structure has exceptionally high oxidation activity but presents much better oxidation resistance due to its synchronous oxidation of atomic units and homogeneous composition in the generated oxide layer.However,the oxidation resistance of SiBCN ceramic will degrade during the continual crystallization process,especially for the formation of the nanocapsule-like structure,due to heterogeneous oxidation caused by the phase separation.Besides,the activation energy and rate-controlling mechanism of the atomic units and phases in SiBCN ceramics were obtained.The BNCx(Ea=145 kJ/mol)and SiC(2-x)(Ea=364 kJ/mol)atomic units in amorphous SiBCN structure can be oxidized at relatively lower temperatures with much lower activation energy than the corresponding BN(C)(Ea=209 kJ/mol)and SiC(Ea=533 kJ/mol)phases in crystalline structure,and the synchronous oxidation of the SiC(2-x)and BNCx units above 750C changes the oxidation activation energy of BNCx(Ea=332 kJ/mol)to that similar to SiC(2-x).The heterogeneous oxide layer formed from the nanocapsule-like structure will decrease the activation energy SiC(Ea=445 kJ/mol)and t-BN(Ea=198 kJ/mol).展开更多
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp...To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.展开更多
Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research...Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders.展开更多
Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6...Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.展开更多
A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]py...A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.展开更多
The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and...The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.展开更多
Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene...Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.展开更多
In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and dif...In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.展开更多
Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfull...Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfully synthesized under hydrothermal conditions and characterized structurally by IR spectroscopy,elemental analyses,single-crystal X-ray diffraction,powder X-ray diffraction,and thermogravimetric analysis.The results of single-crystal X-ray diffraction show that complex 1 presents a 1D zigzag chain structure and further extends to a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.Meanwhile,complex 2 has a zero-dimensional structure and also extends to form a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.In addition,both 1and 2 exhibited luminescent properties in the solid state.Furthermore,quantum chemical calculations were carried out on the"molecular fragments"extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method constructed by the Gaussian 16 program.The calculated values signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ)ions.CCDC:2332173,1;2332176,2.展开更多
Mg_(x)(Ni_(0.8)La_(0.2))_(100-x),where x=60,70,80,exhibiting a nanocrystalline microstructure,were prepared through the crystallization of amorphous alloys.The investigation encompassed the phase constitution,grain si...Mg_(x)(Ni_(0.8)La_(0.2))_(100-x),where x=60,70,80,exhibiting a nanocrystalline microstructure,were prepared through the crystallization of amorphous alloys.The investigation encompassed the phase constitution,grain size,microstructural stability,and hydrogen storage properties.Crystallization kinetics,along with in-situ high-energy XRD characterization,revealed a concentrated and synchronous crystallization of Mg_(2)Ni and RE-Mg-Ni ternary phases with the increase in La and Ni content.The attributed synchronous crystallization process was found to be a result of the close local affinity of Mg_(2)Ni and RE-Mg-Ni ternary phases,as assessed by the thermodynamic Miedema model.Significant secondary phase pinning effect,arising from the high likelihood of well-matching phase structures between Mg_(2)Ni,LaMg_(2)Ni,and LaMgNi_(4),was validated through both the edge-to-edge matching model prediction and experimental observation.Thefine and homogeneous microstructure was shown to be a consequence of fast crystallization kinetics and the secondary phase pinning effect.Improved activation performance and cycling stability were observed,stemming from grain refinement and excellent microstructural stability.Our study provides insights into mechanism of grain refinement of nanocrystalline microstructure tailored by phase constitution and crystallization kinetics in the amorphous-crystallization route.We also demonstrate the potential of material design guided by phase equilibria and crystallographic predictions to improve nanocrystalline with excellent microstructural stability.展开更多
Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show ...Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show that the crystallization of Mg65Cu25Y10 bulk amorphous alloy specimen becomes complete as the treating time increases and Mg2Cu,Mg24Y5 and HCP-Mg crystalline phases are found.Snowflake-like morphology is found in different specimens through SEM observation.The EDS patterns show that the composition of the snowflake-like structure is close to that of the as-cast alloy.Laminated structures are observed from the TEM images of the snowflake-like structure.From the electron diffraction patterns,it is seen that the snowflake-like structure is the combination of Mg24Y5 and amorphous matrix.The FCC-Mg phase in the matrix transforms into HCP-Mg during the heat-treating process.展开更多
To improve the ability of diglycolamide extractants for the extraction of Sr(Ⅱ)from high-level waste liquid,N,N,N′,N′-tetracyclohexyldiglycolamide(TCHDGA)was proposed and studied to extract Sr(Ⅱ)from nitrate media...To improve the ability of diglycolamide extractants for the extraction of Sr(Ⅱ)from high-level waste liquid,N,N,N′,N′-tetracyclohexyldiglycolamide(TCHDGA)was proposed and studied to extract Sr(Ⅱ)from nitrate media.TCHDGA was prepared and characterized by 1H nuclear magnetic resonance spectroscopy(NMR),^(13)C NMR,and fourier transform infrared spectroscopy(FT-IR).Various factors affecting extraction were studied systematically.In just 20 s,the extraction rate can reach approximately 98.2%.The extraction capacity of cyclohexyl-substituted extractant TCHDGA is tens of times higher than that with linear or branched chain alkyl.The chemical structure of the complex has been demonstrated to be[Sr3TCHDGA]·(NO_(3))_(2),based on FT-IR,X-ray photoelectron spectroscopy(XPS),and crystal structure analysis.The crystal belongs to the monoclinic system,space group P21,and a strontium ion coordinates with nine oxygen atoms,all of which contribute from TCHDGA.The stripping rate can reach over 99%when using distilled water or 0.50 mol·L^(-1)oxalic acid as stripping agents.展开更多
All-inorganic perovskites based on cesium-lead-bromine(Cs-Pb-Br)have been a prominent research focus in optoelectronics in recent years.The optimisation and tunability of their macroscopic properties exploit the confo...All-inorganic perovskites based on cesium-lead-bromine(Cs-Pb-Br)have been a prominent research focus in optoelectronics in recent years.The optimisation and tunability of their macroscopic properties exploit the conformational flexibility,resulting in various crystal structures.Varying synthesis parameters can yield distinct crystal structures from Cs,Pb,and Br precursors,and manually exploring the relationship between these synthesis parameters and the resulting crystal structure is both labour-intensive and time-consuming.Machine learning(ML)can rapidly uncover insights and drive discoveries in chemical synthesis with the support of data,significantly reducing both the cost and development cycle of materials.Here,we gathered synthesis parameters from published literature(220 synthesis runs)and implemented eight distinct ML models,including eXtreme Gradient Boosting(XGB),Decision Tree(DT),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),Logistic Regression(LR),Gradient Boosting(GB),and K-Nearest(KN)to classify and predict Cs-Pb-Br crystal structures from given synthesis parameters.Validation accuracy,precision,F1 score,recall,and average area under the curve(AUC)are employed to evaluate these ML models.The XGB model exhibited the best performance,achieving a validation accuracy of 0.841.The trained XGB model was subsequently utilised to predict the structure from 10 experimental runs using a randomised set of parameters,achieving a testing accuracy of 0.8.The results indicate that the Cs/Pb molar ratio,reaction time,and the concentration of organic compounds(ligands)play crucial roles in synthesising various crystal structures of Cs-Pb-Br.This study demonstrates a significant decrease in effort required for experimental procedures and builds a foundational basis for predicting crystal structures from synthesis parameters.展开更多
Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In orde...Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In order to further reduce the size and improve the performance of the proposed filter,defected ground structure(DGS)has been implemented in the filter.Based on this structure,the volume of the inductor is reduced by 60%eficiently compared with the inductor without DGS,and the Q-factor is increased up to 257%compared with the traditional multilayer spiral inductor.The measured results indicate that the designed filter has a very sharp stopband,an insertion loss of 2.3dB,and a return loss of 18.6dB in the passband.The whole volume of the fabricated filter is 0.032入_(g)×0.05入_(g)×0.00075入_(g),where Ag is the guided wavelength of the center frequency.The proposed filter is easily integrated into radio-frequency/microwave circuitry at a low manufacturing cost,especially wireless communication.展开更多
As an extreme physical condition,high pressure serves as a potent means to substantially modify the interatomic distances and bonding patterns within condensed matter,thereby enabling the macroscopic manipulation of m...As an extreme physical condition,high pressure serves as a potent means to substantially modify the interatomic distances and bonding patterns within condensed matter,thereby enabling the macroscopic manipulation of material properties.We employed the CALYPSO method to predict the stable structures of RbB_(2)C_(4)across the pressure range from 0 GPa to 100 GPa and investigated its physical properties through first-principles calculations.Specially,we found four novel structures,namely,P6_(3)/mcm-,Amm2-,P1-,and I4/mmm-RbB_(2)C_(4).Under pressure conditions,electronic structure calculations reveal that all of them exhibit metallic characteristics.The calculation results of formation enthalpy show that the P6_(3)/mcm structure can be synthesized within the pressure range of 0–40 GPa.Specially,the Amm2,P1,and I4/mmm structures can be synthesized above 4 GPa,6 GPa,10 GPa,respectively.Moreover,the estimated Vickers hardness value of I4/mmm-RbB_(2)C_(4)compound is 47 GPa,suggesting that it is a superhard material.Interestingly,this study uncovers the continuous transformation of the crystal structure of RbB_(2)C_(4)from a layered configuration to folded and tubular forms,ultimately attaining a stabilized cage-like structure under the pressure span of 0–100 GPa.The application of pressure offers a formidable impetus for the advancement and innovation in condensed matter physics,facilitating the exploration of novel states and functions of matter.展开更多
Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanos...Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanostructure as well as amorphous structure is still full of challenges.In this work,high-entropy metal organic framework(HE-MOF)is employed as the self-sacrificial template to fabricate FeCoNiCuMnP x high-entropy phosphide/carbon(HEP/C)composites.The obtained composite shows a het-erostructured fusiform morphology,in which the HEP is encapsulated by a carbon layer,revealing high electron conductivity as well as rich catalytic active sites for oxygen evolution reaction(OER).Beside,it is found that there is a short-range ordered crystal structure in the amorphous phase,which is bene-ficial for revealing high OER catalytic activity as well as good stability.As a result,the optimum HEP/C composite shows an overpotential 239 mV@10 mA cm^(−2)with a small Tafel slope of 72.5 mV dec^(−1) for catalyzing OER in alkaline solution.展开更多
The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stab...The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stable ordered Nb-Ti compound under ambient pressure.Extensive first-principles calculations have provided insights into the electronic structure,bonding and superconducting properties of Nb_(7)Ti.The superconducting transition temperature(T_(c))for Nb_(7)Ti at ambient pressure is estimated within the framework of BCS theory to be about 17.5 K,which is significantly higher—nearly double—that of the widely utilized NbTi alloy.Furthermore,the results unveil that the high T_(c) is mainly attributed to the unique ordered lattice along with the strong electron-phonon coupling driven by interatomic interactions at mid-frequency and phonon softening induced by low-frequency Fermi surface nesting.Valuable insights are provided for the subsequent synthesis of application-oriented superconductors at low pressure.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U23A20583,52033005,U21A2090,and 52173040)Department of Science and Technology of Sichuan Province(No.2024NSFTD0003)。
文摘Poly(_(L)-lactide)(PLLA),a leading biodegradable polyester,has demonstrated potential as a sustainable alternative,owing to its excellent biodegradability and rigidity.However,their slow crystallization kinetics and poor heat resistance limit their application scope.Recent advances have highlighted that the combination of extensional flow and thermal fields can achieve toughness–stiffness balance,high transparency,and good heat resistance.However,the effect of extensional flow on the post-non-isothermal crystallization of PLLA during heating and the resulting crystalline texture remains unclear.In this study,PLLA with a heterogeneous amorphous structure and oriented polymorph was prepared by extensional flow.The effect of heterogeneous amorphous structures on non-isothermal crystallization kinetics during the heating process was studied by thermal analysis,polarized optical microscopy,infrared spectroscopy,and ex situ/in situ X-ray characterization.These results clearly illustrate that extensional flow enhances the formation of oriented crystalline structures,accelerates non-isothermal crystallization,and modulates the polymorphic composition of PLLA.Moreover,an unexpected dual cold-crystallization behavior is identified in ordered PLLA samples upon extensional flow,which is from the extensional flow-induced heterogeneous amorphous phase into α' phase(low-temperature peak)and the pristine amorphous phase intoαphase(high-temperature peak).The extensional flow primarily promotes the formation of the more perfectαandα'phases,but has a negative effect on the final content ofαphase formed after cold crystallization andα'-to-αphase transformation.The findings of this work advance the understanding of PLLA non-isothermal crystallization after extensional flow and offer valuable guidance for high-performance PLLA upon heat treatment in practical processing.
文摘Noble metal-based intermetallic compounds(IMCs)with ordered atomic arrangements exhibit remarkable electrocatalytic activity owing to their unique crystal and electronic structures.During the past years,great advance has been made in the development of noble metal-based IMCs.Recently,Lu and coworkers reported ultrathin“amorphous/intermetallic”(A/IMC)heterophase PtPbBi nanosheets(NSs)with a thickness of 2.5±0.3 nm.The oxidative etching effect caused by the coexistence of O_(2)and Br^(-)ions plays a crucial role in the formation of the IMC and unique two-dimensional structure with irregular shapes and curled edges.This study shows that fabricating an A/IMC heterophase structure with a multimetallic composition can effectively enhance the catalytic performances of noble metal-based electrocatalysts.
基金supported by a project of the Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(Grant No.SZPR2023007)Natural Science Foundation of Sichuan Province(Grant No.2025ZNSFSC0449)Shenzhen Science and Technology Program(Grant No.RCBS20231211090637065).
文摘Lithium-ion batteries with LiCoO_(2)(LCO)cathodes are widely used in various electronic devices,resulting in a large amount of spent LCO(SLCO).Therefore,there is an urgent need for an efficient technique for recycling SLCO.However,due to the presence of cobalt oxide with a spinel phase on the surface of highly-degraded LCO,the strong electrostatic repulsion from the transition metal octahedron poses a high Li replenishment barrier,making the regeneration of highly-degraded LCO a challenge.Herein,we propose a structural transformation strategy for reconstructing Li replenishment channels to aid the direct regeneration of highly-degraded LCO.In this approach,ball milling is employed to disrupt the inherent structure of highly-degraded LCO,thereby releasing the internal stress and converting the surface spinel phase into a homogeneous amorphous structure,which promotes Li insertion and regeneration.The regenerated LCO(RLCO)exhibits an outstanding discharge capacity of 179.10 mAh·g^(−1) in the voltage range of 3.0–4.5 V at 0.5 C.The proposed strategy is an effective regeneration approach for highly-degraded LCO,thereby facilitating the efficient recycling of spent lithium-ion battery cathode materials.
基金financially supported by the National Natural Science Foundation of China(Grant no.52002092,51832002,52172068,52232004,52372059)Heilong Jiang Natural Science Fund for Young Scholars(Grant no.YQ2021E017)+2 种基金National Key Research and Development Program of China(Grant no.2017YFB0310400)Heilongjiang Touyan Team Program,Advanced Talents Scientific Research Foundation of Shenzhen,and Fundamental Research Funds for the Central Universities(2022FRFK0600XX)RR gratefully acknowledges the financial support provided by the Research Training Group 2561“MatCom-ComMat:Materials Compounds from Composite Materials for Applications in Extreme Conditions”funded by the Deutsche Forschungsgemeinschaft(DFG),Bonn,Germany.
文摘In this study,the structural evolution of SiBCN ceramics during crystallization and its effects on oxidation behavior involving different atomic units or formed phases in amorphous or crystalline SiBCN ceramics were analyzed.The amorphous structure has exceptionally high oxidation activity but presents much better oxidation resistance due to its synchronous oxidation of atomic units and homogeneous composition in the generated oxide layer.However,the oxidation resistance of SiBCN ceramic will degrade during the continual crystallization process,especially for the formation of the nanocapsule-like structure,due to heterogeneous oxidation caused by the phase separation.Besides,the activation energy and rate-controlling mechanism of the atomic units and phases in SiBCN ceramics were obtained.The BNCx(Ea=145 kJ/mol)and SiC(2-x)(Ea=364 kJ/mol)atomic units in amorphous SiBCN structure can be oxidized at relatively lower temperatures with much lower activation energy than the corresponding BN(C)(Ea=209 kJ/mol)and SiC(Ea=533 kJ/mol)phases in crystalline structure,and the synchronous oxidation of the SiC(2-x)and BNCx units above 750C changes the oxidation activation energy of BNCx(Ea=332 kJ/mol)to that similar to SiC(2-x).The heterogeneous oxide layer formed from the nanocapsule-like structure will decrease the activation energy SiC(Ea=445 kJ/mol)and t-BN(Ea=198 kJ/mol).
文摘To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.
基金the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(202102AB080019-1)National Key Research and Development Program of China(2022YFB3708600)the National Natural Science Foundation of China(91960103).
文摘Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders.
文摘Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.
文摘A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.
文摘The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.
文摘Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.
文摘In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.
文摘Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfully synthesized under hydrothermal conditions and characterized structurally by IR spectroscopy,elemental analyses,single-crystal X-ray diffraction,powder X-ray diffraction,and thermogravimetric analysis.The results of single-crystal X-ray diffraction show that complex 1 presents a 1D zigzag chain structure and further extends to a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.Meanwhile,complex 2 has a zero-dimensional structure and also extends to form a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.In addition,both 1and 2 exhibited luminescent properties in the solid state.Furthermore,quantum chemical calculations were carried out on the"molecular fragments"extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method constructed by the Gaussian 16 program.The calculated values signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ)ions.CCDC:2332173,1;2332176,2.
基金supported by National Natural Science Foundation of China(51761034,51961032,51962028 and 52261041)Innovation Foundation of Inner Mongolia University of Science and Technology(2019YQL03)+2 种基金Major Science and Technology Project of Inner Mongolia(2021ZD0029)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT23005,NJYT23007)Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2401).
文摘Mg_(x)(Ni_(0.8)La_(0.2))_(100-x),where x=60,70,80,exhibiting a nanocrystalline microstructure,were prepared through the crystallization of amorphous alloys.The investigation encompassed the phase constitution,grain size,microstructural stability,and hydrogen storage properties.Crystallization kinetics,along with in-situ high-energy XRD characterization,revealed a concentrated and synchronous crystallization of Mg_(2)Ni and RE-Mg-Ni ternary phases with the increase in La and Ni content.The attributed synchronous crystallization process was found to be a result of the close local affinity of Mg_(2)Ni and RE-Mg-Ni ternary phases,as assessed by the thermodynamic Miedema model.Significant secondary phase pinning effect,arising from the high likelihood of well-matching phase structures between Mg_(2)Ni,LaMg_(2)Ni,and LaMgNi_(4),was validated through both the edge-to-edge matching model prediction and experimental observation.Thefine and homogeneous microstructure was shown to be a consequence of fast crystallization kinetics and the secondary phase pinning effect.Improved activation performance and cycling stability were observed,stemming from grain refinement and excellent microstructural stability.Our study provides insights into mechanism of grain refinement of nanocrystalline microstructure tailored by phase constitution and crystallization kinetics in the amorphous-crystallization route.We also demonstrate the potential of material design guided by phase equilibria and crystallographic predictions to improve nanocrystalline with excellent microstructural stability.
基金Project (2008-04) supported by the Top Talent Plan of Jiangsu University, ChinaProject (10KJA430008) supported by the Natural Science Foundation of Jiangsu Higher Education Institutions,China
文摘Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show that the crystallization of Mg65Cu25Y10 bulk amorphous alloy specimen becomes complete as the treating time increases and Mg2Cu,Mg24Y5 and HCP-Mg crystalline phases are found.Snowflake-like morphology is found in different specimens through SEM observation.The EDS patterns show that the composition of the snowflake-like structure is close to that of the as-cast alloy.Laminated structures are observed from the TEM images of the snowflake-like structure.From the electron diffraction patterns,it is seen that the snowflake-like structure is the combination of Mg24Y5 and amorphous matrix.The FCC-Mg phase in the matrix transforms into HCP-Mg during the heat-treating process.
基金supported by the Natural Science Foundation of Shandong Province(ZR2022QB067).
文摘To improve the ability of diglycolamide extractants for the extraction of Sr(Ⅱ)from high-level waste liquid,N,N,N′,N′-tetracyclohexyldiglycolamide(TCHDGA)was proposed and studied to extract Sr(Ⅱ)from nitrate media.TCHDGA was prepared and characterized by 1H nuclear magnetic resonance spectroscopy(NMR),^(13)C NMR,and fourier transform infrared spectroscopy(FT-IR).Various factors affecting extraction were studied systematically.In just 20 s,the extraction rate can reach approximately 98.2%.The extraction capacity of cyclohexyl-substituted extractant TCHDGA is tens of times higher than that with linear or branched chain alkyl.The chemical structure of the complex has been demonstrated to be[Sr3TCHDGA]·(NO_(3))_(2),based on FT-IR,X-ray photoelectron spectroscopy(XPS),and crystal structure analysis.The crystal belongs to the monoclinic system,space group P21,and a strontium ion coordinates with nine oxygen atoms,all of which contribute from TCHDGA.The stripping rate can reach over 99%when using distilled water or 0.50 mol·L^(-1)oxalic acid as stripping agents.
基金the Italian Space Agency(Agenzia Spaziale Italiana,ASI)in the framework of the Research Day“Giornate della Ricerca Spaziale”initiative through the contract ASI N.2023-4-U.0.
文摘All-inorganic perovskites based on cesium-lead-bromine(Cs-Pb-Br)have been a prominent research focus in optoelectronics in recent years.The optimisation and tunability of their macroscopic properties exploit the conformational flexibility,resulting in various crystal structures.Varying synthesis parameters can yield distinct crystal structures from Cs,Pb,and Br precursors,and manually exploring the relationship between these synthesis parameters and the resulting crystal structure is both labour-intensive and time-consuming.Machine learning(ML)can rapidly uncover insights and drive discoveries in chemical synthesis with the support of data,significantly reducing both the cost and development cycle of materials.Here,we gathered synthesis parameters from published literature(220 synthesis runs)and implemented eight distinct ML models,including eXtreme Gradient Boosting(XGB),Decision Tree(DT),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),Logistic Regression(LR),Gradient Boosting(GB),and K-Nearest(KN)to classify and predict Cs-Pb-Br crystal structures from given synthesis parameters.Validation accuracy,precision,F1 score,recall,and average area under the curve(AUC)are employed to evaluate these ML models.The XGB model exhibited the best performance,achieving a validation accuracy of 0.841.The trained XGB model was subsequently utilised to predict the structure from 10 experimental runs using a randomised set of parameters,achieving a testing accuracy of 0.8.The results indicate that the Cs/Pb molar ratio,reaction time,and the concentration of organic compounds(ligands)play crucial roles in synthesising various crystal structures of Cs-Pb-Br.This study demonstrates a significant decrease in effort required for experimental procedures and builds a foundational basis for predicting crystal structures from synthesis parameters.
基金the Shaanxi Provincial Key Research and Development Program(No.2020GY-040)。
文摘Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In order to further reduce the size and improve the performance of the proposed filter,defected ground structure(DGS)has been implemented in the filter.Based on this structure,the volume of the inductor is reduced by 60%eficiently compared with the inductor without DGS,and the Q-factor is increased up to 257%compared with the traditional multilayer spiral inductor.The measured results indicate that the designed filter has a very sharp stopband,an insertion loss of 2.3dB,and a return loss of 18.6dB in the passband.The whole volume of the fabricated filter is 0.032入_(g)×0.05入_(g)×0.00075入_(g),where Ag is the guided wavelength of the center frequency.The proposed filter is easily integrated into radio-frequency/microwave circuitry at a low manufacturing cost,especially wireless communication.
基金Project supported by the Jilin Provincial Science and Technology Development Joint Fund Project(Grant No.YDZJ202201ZYTS581)supported by the Scientific and Technological Research Project of Jilin Provincial Education Department(Grant No.JJKH20240077KJ).
文摘As an extreme physical condition,high pressure serves as a potent means to substantially modify the interatomic distances and bonding patterns within condensed matter,thereby enabling the macroscopic manipulation of material properties.We employed the CALYPSO method to predict the stable structures of RbB_(2)C_(4)across the pressure range from 0 GPa to 100 GPa and investigated its physical properties through first-principles calculations.Specially,we found four novel structures,namely,P6_(3)/mcm-,Amm2-,P1-,and I4/mmm-RbB_(2)C_(4).Under pressure conditions,electronic structure calculations reveal that all of them exhibit metallic characteristics.The calculation results of formation enthalpy show that the P6_(3)/mcm structure can be synthesized within the pressure range of 0–40 GPa.Specially,the Amm2,P1,and I4/mmm structures can be synthesized above 4 GPa,6 GPa,10 GPa,respectively.Moreover,the estimated Vickers hardness value of I4/mmm-RbB_(2)C_(4)compound is 47 GPa,suggesting that it is a superhard material.Interestingly,this study uncovers the continuous transformation of the crystal structure of RbB_(2)C_(4)from a layered configuration to folded and tubular forms,ultimately attaining a stabilized cage-like structure under the pressure span of 0–100 GPa.The application of pressure offers a formidable impetus for the advancement and innovation in condensed matter physics,facilitating the exploration of novel states and functions of matter.
基金supported by the Natural Science Foundation of Henan Province(No.202300410433)the College Students’Innovative Entrepreneurial Training(No.2022cxcy029),ChinaHirosaki University,Japan,are appreciated.
文摘Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanostructure as well as amorphous structure is still full of challenges.In this work,high-entropy metal organic framework(HE-MOF)is employed as the self-sacrificial template to fabricate FeCoNiCuMnP x high-entropy phosphide/carbon(HEP/C)composites.The obtained composite shows a het-erostructured fusiform morphology,in which the HEP is encapsulated by a carbon layer,revealing high electron conductivity as well as rich catalytic active sites for oxygen evolution reaction(OER).Beside,it is found that there is a short-range ordered crystal structure in the amorphous phase,which is bene-ficial for revealing high OER catalytic activity as well as good stability.As a result,the optimum HEP/C composite shows an overpotential 239 mV@10 mA cm^(−2)with a small Tafel slope of 72.5 mV dec^(−1) for catalyzing OER in alkaline solution.
基金supported by the National Natural Science Foundation of China(Grant Nos.12122405,12274169,and 11574109)the Fundamental Research Funds for the Central Universities。
文摘The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stable ordered Nb-Ti compound under ambient pressure.Extensive first-principles calculations have provided insights into the electronic structure,bonding and superconducting properties of Nb_(7)Ti.The superconducting transition temperature(T_(c))for Nb_(7)Ti at ambient pressure is estimated within the framework of BCS theory to be about 17.5 K,which is significantly higher—nearly double—that of the widely utilized NbTi alloy.Furthermore,the results unveil that the high T_(c) is mainly attributed to the unique ordered lattice along with the strong electron-phonon coupling driven by interatomic interactions at mid-frequency and phonon softening induced by low-frequency Fermi surface nesting.Valuable insights are provided for the subsequent synthesis of application-oriented superconductors at low pressure.