In August 2024,the United Nations General Assembly adopted resolution 78/321 to declare the period from 2025 to 2034 as the“Decade of Action for Cryospheric Sciences”.This action was championed by the Republic of Fr...In August 2024,the United Nations General Assembly adopted resolution 78/321 to declare the period from 2025 to 2034 as the“Decade of Action for Cryospheric Sciences”.This action was championed by the Republic of France and the Republic of Tajikistan,with support from over 30 member states,underscoring the urgent need for an international scientific collaboration to mitigate the far-reaching effects of cryospheric changes on ecosystems,water security,and global climate stability.A dedicated brainstorming session during the March 2025 celebrations in Paris convened over 1,000 policymakers,scientists,and stakeholders to outline the priorities for the Decade of Action.The session aimed to foster cross-border partnerships and strengthen the integration of cryospheric science into global climate adaptation strategies.Joint task force teams developed an integrated governance framework through discussions across five domains—scientific research,socioeconomic impacts,education,policy advocacy,and finance.The Decade of Action for Cryospheric Sciences represents a critical shift from observation to intervention,mobilizing global stakeholders to translate scientific consensus into concrete measures against cryosphere decline.The initiative responds to urgent calls from UNESCO and international partners for coordinated action on cryosphere preservation.展开更多
On November 17–18, the 2018 Academic Annual Meeting of China Society of Cryospheric Science was held successfully in Foshan City, Guangdong Province. In the context of global warming, the cryosphere is undergoing sig...On November 17–18, the 2018 Academic Annual Meeting of China Society of Cryospheric Science was held successfully in Foshan City, Guangdong Province. In the context of global warming, the cryosphere is undergoing significant changes and has major impacts on global and regional ecosystems and socio-economic sustainability. In order to further promote the development process of China’s cryosphere science, strengthen the exchanges between scientific research personnel in different sectors and fields, further condense the scientific research team of the cryosphere science, explore the new development directions of the cryosphere science, and展开更多
As one of the five most important spheres affecting climate systems globally, the cryosphere not only exerts crucial impacts on natural environment, but also plays a key role in guaranteeing the goods and services pro...As one of the five most important spheres affecting climate systems globally, the cryosphere not only exerts crucial impacts on natural environment, but also plays a key role in guaranteeing the goods and services provision of the oasis in the cold and arid regions. However, there is a lack of synthesized knowledge about the contributions and profitability on socio-economic aspects of the cryospheric services (CSs). To cope with this key and urgent sustainable development issues, this study constructs a comprehensive regionalization research system that integrates the natural and socio-economic aspects for cryospheric characteristics with emphasis on interdisciplinary approaches. Guided by the supply- demand equilibrium model and the service maximization model, the research system consists of establishing a classification system for CSs, identifying the spatial distribution pattern of CSs, and constructing the comprehensive regionalization of CSs, which finally divides the research area into relatively independent, complete, and organically linked CS units of multiple spatial levels. By setting up a bridge between the CSs with socio-economic needs, it has profound and practical significance and implications for implementing the sustainable utilization strategies and macroeconomic policymaking for global environmental protection.展开更多
Systematic studies on the cryosphere in China started in the late 1950s. Significant achievements have been made by continuous investigation of glacier inventories, frozen ground observations, paleo-climate analyses o...Systematic studies on the cryosphere in China started in the late 1950s. Significant achievements have been made by continuous investigation of glacier inventories, frozen ground observations, paleo-climate analyses of ice cores, process studies and the modeling of cryopsheric/atmospheric interactions. The general facts and understanding of these changes include: (1) Solid precipitation, including the number of days with frost and hail storms, shows a decreasing tendency over the past half century. (2) In most areas glaciers are retreating or have completely vanished (〉80%), some glaciers are still advancing (5%-20% depending upon time period). The annual glacial melt water has been increasing since the 1980s. This increased supply of melt water to river runoff in Northwest China is about a 10%-13%. (3) The long-term variability of snow cover in western China is characterized by a large inter-annual variation superimposed on a small increasing trend. Snow cover variability in the Qinghai-Xizang Plateau (QXP) is influenced by the Indian monsoon, and conversely impacts monsoon onset and strength and eventually the drought and flood events in middle-low reaches of Yangtze River. (4) Frozen ground, including permafrost, is decaying both in QXP and in Northeast China. The most significant changes occurred in the regions with thickest seasonal frozen ground (SFG), i.e., inland QXP, then northeastern and northwestern QXP. The cold season air temperature is the main factor controlling SFG change. The increase of ground surface temperatures is more significant than air temperature. (5) The sea ice coverage over the Bohai Sea and Yellow Sea has deceased since the 1980s. (6) River ice duration and ice thickness is also decreasing in northern China. In 2001, the Chinese National Committee of World Climate Research Program/Climate and Cyosphere (WCRP/CliC) (CNC-CliC) was organized to strengthen research on climate and cryosphere in China. Future monitoring of the cryosphere in China will be enhanced both in spatial coverage and through the use of new techniques. Interactions between atmosphere/cryosphere/hydrosphere/land-surface will be assessed to improve our understanding of the mechanisms of cryospheric change.展开更多
On the basis of analyzing the importance of cryospheric researches in China and current status of cryospheric sciences in the world, this paper addresses key issues and main contents of present cryospheric sciences in...On the basis of analyzing the importance of cryospheric researches in China and current status of cryospheric sciences in the world, this paper addresses key issues and main contents of present cryospheric sciences in China. The key issues currently addressed are: i) mechanisms of different types of glaciers in response to climate change and the scale-conversion in water resources assessments; ii) modeling of water and heat exchanges between frozen soil and vegetation; iii) parameterization of physical processes in cryosphere as well as coupling with climate models. To gain full clarification of these key issues, works of the following three aspects should be highlighted, i.e., cryospheric processes and responses to climate change, influences of cryospheric changes, and adaptation strategies for cryospheric changes.展开更多
The cryosphere is the frozen part of the Earth’s system. Snow and ice are the main constituents of the cryosphere and may be found in different states, such as snow, freshwater ice, sea ice, perma-frost, and continen...The cryosphere is the frozen part of the Earth’s system. Snow and ice are the main constituents of the cryosphere and may be found in different states, such as snow, freshwater ice, sea ice, perma-frost, and continental ice masses in the form of glaciers and ice sheets. The present review mainly deals with state-of-the-art applications of synthetic aperture radar (SAR) with a special emphasize on cryospheric information extraction. SAR is the most important active microwave remote sensing (RS) instrument for ice monitoring, which provides high-resolution images of the Earth’s surface. SAR is an ideal sensor in RS technology, which works in all-weather and day and night conditions to provide useful unprecedented information, especially in the cryospheric regions which are almost inaccessible areas on Earth. This paper addresses the technological evolution of SAR and its applications in studying the various components of the cryosphere. The arrival of SAR radically changed the capabilities of information extraction related to ice type, new ice formation, and ice thickness. SAR applications can be divided into two broad classes-polarimetric applications and interferometric applications. Polarimetric SAR has been effectively used for mapping calving fronts, crevasses, surface structures, sea ice, detection of icebergs, etc. The paper also summarizes both the operational and climate change research by using SAR for sea ice parameter detection. Digital elevation model (DEM) generation and glacier velocity mapping are the two most important applications used in cryosphere using SAR interferometry or interferometric SAR (InSAR). Space-borne InSAR techniques for measuring ice flow velocity and topography have developed rapidly over the last decade. InSAR is capable of measuring ice motion that has radically changed the science of glaciers and ice sheets. Measurement of temperate glacier velocities and surface characteristics by using airborne and space-borne interferometric satellite images have been the significant application in glaciology and cryospheric studies. Space-borne InSAR has contributed to major evolution in many research areas of glaciological study by measuring ice-stream flow velocity, improving understanding of ice-shelf processes, yielding velocity for flux-gate based mass-balance assessment, and mapping flow of mountain glaciers. The present review summarizes the salient development of SAR applications in cryosphere and glaciology.展开更多
Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of obje...Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of object-oriented classification (OOC) algorithms employed for the extraction of information from remotely sensed satellite imageries. The state-of-the-art classifiers are reviewed for their potential usage in urban remote sensing (RS), with a special focus on cryospheric applications. Generally, classifiers for information extraction can be divided into three catalogues: 1) based on the type of learning (supervised and unsupervised), 2) based on assumptions on data distribution (parametric and non-parametric) and, 3) based on the number of outputs for each spatial unit (hard and soft). The classification methods are broadly based on the PBC or the OOC approaches. Both methods have their own advantages and disadvantages depending upon their area of application and most importantly the RS datasets that are used for information extraction. Classification algorithms are variedly explored in the cryosphere for extracting geospatial information for various logistic and scientific applications, such as to understand temporal changes in geographical phenomena. Information extraction in cryospheric regions is challenging, accounting to the very similar and conflicting spectral responses of the features present in the region. The spectral responses of snow and ice, water, and blue ice, rock and shadow are a big challenge for the pixel-based classifiers. Thus, in such cases, OOC approach is superior for extracting information from the cryospheric regions. Also, ensemble classifiers and customized spectral index ratios (CSIR) proved extremely good approaches for information extraction from cryospheric regions. The present review would be beneficial for developing new classifiers in the cryospheric environment for better understanding of spatial-temporal changes over long time scales.展开更多
In coordination with Global Cryosphere Watch (GCW) initiated by World Meteorology Administration (WMO), a regional ob- servation network is proposed based on existing stations/sites over High Asia and cryospberic ...In coordination with Global Cryosphere Watch (GCW) initiated by World Meteorology Administration (WMO), a regional ob- servation network is proposed based on existing stations/sites over High Asia and cryospberic elements required by GCW. Thus, High Asian Cryosphere (HAC) network is preliminary designed, composing of seven "supersites", each containing several refer- ence sites. The network covers major mountain ranges in High Asia, such as East Tianshan, Qilian, Tanggula, Nyainqentanglha, Himalayas as well as the central and eastern Qinghai-Xizang (Tibet) Plateau. Although multiple cryospberic elements were ob- served at the existing HAC network, many others, which are required by Integrated Global Observation System-Cryosphere Theme (IGOS-Cryosphere), are not yet included. More comprehensive observations are necessary to be included into "supersites" of HAC, so that the basic requirements for validation of satellite data, assimilation and coupled regional models can be met.展开更多
Perfluoroalkyl acid analogs(PFAAs)are a class of chemically stable environmentally persistent organic pollutants(POPs)that are difficult to degrade and have a strong capacity to accumulate in the human body.PFAAs have...Perfluoroalkyl acid analogs(PFAAs)are a class of chemically stable environmentally persistent organic pollutants(POPs)that are difficult to degrade and have a strong capacity to accumulate in the human body.PFAAs have been found to be biotoxic to humans and have been detected in various environmental media,especially in the cryosphere at trace concentrations.The cryosphere,sensitively responds to climate change,plays a crucial role in the global water,carbon and energy cycles.However,researches on cryosphere PFAAs especially in Tibetan Plateau(TP)is limited.Therefore,we summarize the physicochemical properties,physiological toxicity,spatiotemporal distribution,sources,diffusion and migration pathways,as well as analysis and removal methods of PFAAs in the cryosphere regions.The results show that PFAAs pollutants are mainly produced and distributed in the more economically developed countries in Europe and the United States,as well as in East Asia,and PFAAs can be transported by atmospheric circulation and water cycle to remote regions including cryosphere regions.The current detection methods for PFAAs in cryosphere need to be further refined for increased accuracy and convenience.There is also a need to develop more effective removal methods that will reduce the environmental and human threats posed by these PFAAs.Finally,we propose key scientific questions for future research in cryosphere including PFAAs redistribution influenced by cryosphere changes,human activities,and the interaction of other spheres.展开更多
The properties of laser signals are affected by deformation of the optical fibre through which they are transmitted.While this deformation dependence is undesirable in telecommunication,it can be exploited for the con...The properties of laser signals are affected by deformation of the optical fibre through which they are transmitted.While this deformation dependence is undesirable in telecommunication,it can be exploited for the construction of novel seismic sensors that fill a niche in data acquisition where traditional seismometer arrays would be difficult to deploy.This includes densely populated urban centers,the oceans,volcanoes and the Earth’s polar regions.These notes complement a presentation on recent methodological developments and applications in fibre-optic seismology.The first part is focused on the use of distributed fibreoptic sensing in cryosphere research,and specifically the investigation of the internal structure and seismicity of glaciers and ice sheets.The second part is dedicated to recent advances in integrated fibre-optic sensing,with emphasis on novel measurement principles and sensitivity.展开更多
1.Aims and scope.The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions...1.Aims and scope.The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical,chemical and biological processes and their interactions,and on the response of arid regions to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of desert,oasis,loess,and aeolian landforms,etc.;and support integrated studies on mountain-desert-oasis system in arid watershed with water resources as masterstroke,so as to provide reliable technological support for water safety,ecology safety and food safety in arid regions.展开更多
1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions...1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical.展开更多
1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions...1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.展开更多
1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions...1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical,chemical and biological processes and their interactions,and on the response of arid regions to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of desert,oasis,loess,and aeolian landforms,etc.;and support integrated studies on mountain-desert-oasis system in arid watershed with water resources as masterstroke,so as to provide reliable technological support for water safety,ecology safety and food safety in arid regions.展开更多
The cryosphere is a prominent factor in and an indicator of global climate change. It serves one of the most direct and sensitive feedbacks in the climate system, and plays an important role in the earth's climate sy...The cryosphere is a prominent factor in and an indicator of global climate change. It serves one of the most direct and sensitive feedbacks in the climate system, and plays an important role in the earth's climate system. Cryospheric research has attracted unprecedented attention in the context of global warming, and is now one of the most active areas in studies of global change, sustainable development, and the climate system. This paper addresses recent and potential future changes in the cryosphere both globally and within China under the background of global warming. Particular attention is paid to progress toward understanding the impacts of the Tibetan Plateau and Eurasian snow cover, Arctic and Antarctic sea ice, and permafrost and glaciers on Chinese climate. The future development of cryospheric research in China is also discussed.展开更多
Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation ...Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation and temperature)on the distribution of landslides in the eastern regions of the Himalayas is poorly understood.To address this,the current study analyzes the relationship between the spatial distribution of landslide characteristics and climatic variables from 2013 to 2021.Google Earth Engine(GEE)was employed to make landslide inventories using satellite data.The results show that 2163,6927,and 9601 landslides were heterogeneously distributed across the study area in 2013,2017,and 2021,respectively.The maximum annual temperature was positively correlated with the distribution of landslides,whereas precipitation was found to have a non-significant impact on the landslide distribution.Spatially,most of the landslides occurred in areas with maximum annual precipitation ranging from 800 to 1600 mm and maximum annual temperature above 15℃.However,in certain regions,earthquake disruptions marginally affected the occurrence of landslides.Landslides were highly distributed in areas with elevations ranging between 3000 and 5000 m above sea level,and many landslides occurred near the lower permafrost limit and close to glaciers.The latter indicates that temperature change-induced freeze-thaw action influences landslides in the region.Temperature changes have shown a positive correlation with the number of landslides within elevations,indicating that temperature affects their spatial distribution.Various climate projections suggest that the region will experience further warming,which will increase the likelihood of landslides in the future.Thus,it is crucial to enhance ground observation capabilities and climate datasets to effectively monitor and mitigate landslide risks.展开更多
While the cryosphere may bring in adverse impacts on natural and built environment, it may also provide benefits resulting from cryosphere services. By looking into the effect of the cryosphere on human-being, the stu...While the cryosphere may bring in adverse impacts on natural and built environment, it may also provide benefits resulting from cryosphere services. By looking into the effect of the cryosphere on human-being, the study develops a unified approach in the analysis of cryospheric risks and services, with one focusing on the adverse impacts by cryospheric hazards and another emphasizing on the benefits that people can obtain from the natural capitals in the cryosphere. Meanwhile, climate change could further alter and complicate the roles of the cryosphere, not only by the changes in risks to cryospheric hazards, but also the changes in services that could potentially add more risks. The study further proposed a risk-based approach for the development of climate adaptation in the cryosphere. The approach essentially takes options to reduce exposure and vulnerability of societies to cryospheric hazards, and to better manage natural capitals and demands together with enhancing utility of the cryosphere, so as to maintain the benefit of cryosphere services in a sustainable way. The study further addresses the role of cryosphere services in strengthening sustainable development in terms of its relation with the sustainable development goals (SDGs), and provides a preliminary results on how the services contributes to SDGs. Overall, the approach developed in this study creates a new way to comprehensively assess the effect of cryosphere changes on our society and identify measures to maximize the benefit while minimizing the risk in relation to the cryosphere.展开更多
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagatio...Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermalmechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physi cal arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a con tinuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelas tic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms,the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments, field measurements and numerical simulations supporting the fundamental research in waveice interaction models are discussed. We conclude with some outlook of future research needs in this field.展开更多
Cryospheric meltwater is an important runoff component and it profoundly influences changes in water resources in the Tibetan Plateau.Significant changes in runoff components occur in the three-river headwater region(...Cryospheric meltwater is an important runoff component and it profoundly influences changes in water resources in the Tibetan Plateau.Significant changes in runoff components occur in the three-river headwater region(TRHR),which is an important part of“Chinese Water Tower”due to climate warming.However,these effects remain unclear owing to the sparse and uneven distribution of monitoring sites and limited field investigations.Quantifying the contribution of cryospheric meltwater to outlet runoff is a key scientific question that needs to be addressed.In this study,we analyzed 907 precipitation,river water,ground ice,supra-permafrost water,and glacier snow meltwater samples collected from October 2019 to September 2020 in the TRHR.The following results were obtained:(1)There was significant spatio-temporal variation in stable isotopes in different waters;(2)The seasonal trends of stable isotopes for different waters,the relationship between each water body and the local meteoric water line(LWML)confirmed that river water was mainly recharged by precipitation,supra-permafrost water,and glacier snow meltwater;(3)Precipitation,supra-permafrost water,and glacier snow meltwater accounted for 52%,39%,and 9%of river water,respectively,during the ablation period according to the end-member mixing analysis(EMMA);(4)In terms of future runoff components,there will be many challenges due to increasing precipitation and evaporation,decreasing snow cover,glacier retreat,and permafrost degradation.Therefore,it is crucial to establish the“star-machine-ground”observation networks,forecast extreme precipitation and hydrological events,build the“TRHE on the Cloud”platform,and implement systematic hydraulic engineering projects to support the management and utilization of water resources in the TRHR.The findings of environmental isotope analysis provide insights into water resources as well as scientific basis for rational use of water resources in the TRHR.展开更多
As one of the five components of Earth's climatic system,the cryosphere has been undergoing rapid shrinking due to global warming.Studies on the formation,evolution,distribution and dynamics of cryospheric compone...As one of the five components of Earth's climatic system,the cryosphere has been undergoing rapid shrinking due to global warming.Studies on the formation,evolution,distribution and dynamics of cryospheric components and their interactions with the human system are of increasing importance to society.In recent decades,the mass loss of glaciers,including the Greenland and Antarctic ice sheets,has accelerated.The extent of sea ice and snow cover has been shrinking,and permafrost has been degrading.The main sustainable development goals in cryospheric regions have been impacted.The shrinking of the cryosphere results in sea-level rise,which is currently affecting,or is soon expected to affect,17 coastal megacities and some small island countries.In East Asia,South Asia and North America,climate anomalies are closely related to the extent of Arctic sea ice and snow cover in the Northern Hemisphere.Increasing freshwater melting from the ice sheets and sea ice may be one reason for the slowdown in Atlantic meridional overturning circulation in the Arctic and Southern Oceans.The foundations of ports and infrastructure in the circum-Arctic permafrost regions suffer from the consequences of permafrost degradation.In high plateaus and mountainous regions,the cryosphere's shrinking has led to fluctuations in river runoff,caused water shortages and increased flooding risks in certain areas.These changes in cryospheric components have shown significant heterogeneity at different temporal and spatial scales.Our results suggest that the quantitative evaluation of future changes in the cryosphere still needs to be improved by enhancing existing observations and model simulations.Theoretical and methodological innovations are required to strengthen social economies'resilience to the impact of cryospheric change.展开更多
基金support from USA NSF Grant OPP2213875NASA Grant 80NSSC22K1707.
文摘In August 2024,the United Nations General Assembly adopted resolution 78/321 to declare the period from 2025 to 2034 as the“Decade of Action for Cryospheric Sciences”.This action was championed by the Republic of France and the Republic of Tajikistan,with support from over 30 member states,underscoring the urgent need for an international scientific collaboration to mitigate the far-reaching effects of cryospheric changes on ecosystems,water security,and global climate stability.A dedicated brainstorming session during the March 2025 celebrations in Paris convened over 1,000 policymakers,scientists,and stakeholders to outline the priorities for the Decade of Action.The session aimed to foster cross-border partnerships and strengthen the integration of cryospheric science into global climate adaptation strategies.Joint task force teams developed an integrated governance framework through discussions across five domains—scientific research,socioeconomic impacts,education,policy advocacy,and finance.The Decade of Action for Cryospheric Sciences represents a critical shift from observation to intervention,mobilizing global stakeholders to translate scientific consensus into concrete measures against cryosphere decline.The initiative responds to urgent calls from UNESCO and international partners for coordinated action on cryosphere preservation.
文摘On November 17–18, the 2018 Academic Annual Meeting of China Society of Cryospheric Science was held successfully in Foshan City, Guangdong Province. In the context of global warming, the cryosphere is undergoing significant changes and has major impacts on global and regional ecosystems and socio-economic sustainability. In order to further promote the development process of China’s cryosphere science, strengthen the exchanges between scientific research personnel in different sectors and fields, further condense the scientific research team of the cryosphere science, explore the new development directions of the cryosphere science, and
基金the National Natural Science Foundation of China (41690145).
文摘As one of the five most important spheres affecting climate systems globally, the cryosphere not only exerts crucial impacts on natural environment, but also plays a key role in guaranteeing the goods and services provision of the oasis in the cold and arid regions. However, there is a lack of synthesized knowledge about the contributions and profitability on socio-economic aspects of the cryospheric services (CSs). To cope with this key and urgent sustainable development issues, this study constructs a comprehensive regionalization research system that integrates the natural and socio-economic aspects for cryospheric characteristics with emphasis on interdisciplinary approaches. Guided by the supply- demand equilibrium model and the service maximization model, the research system consists of establishing a classification system for CSs, identifying the spatial distribution pattern of CSs, and constructing the comprehensive regionalization of CSs, which finally divides the research area into relatively independent, complete, and organically linked CS units of multiple spatial levels. By setting up a bridge between the CSs with socio-economic needs, it has profound and practical significance and implications for implementing the sustainable utilization strategies and macroeconomic policymaking for global environmental protection.
文摘Systematic studies on the cryosphere in China started in the late 1950s. Significant achievements have been made by continuous investigation of glacier inventories, frozen ground observations, paleo-climate analyses of ice cores, process studies and the modeling of cryopsheric/atmospheric interactions. The general facts and understanding of these changes include: (1) Solid precipitation, including the number of days with frost and hail storms, shows a decreasing tendency over the past half century. (2) In most areas glaciers are retreating or have completely vanished (〉80%), some glaciers are still advancing (5%-20% depending upon time period). The annual glacial melt water has been increasing since the 1980s. This increased supply of melt water to river runoff in Northwest China is about a 10%-13%. (3) The long-term variability of snow cover in western China is characterized by a large inter-annual variation superimposed on a small increasing trend. Snow cover variability in the Qinghai-Xizang Plateau (QXP) is influenced by the Indian monsoon, and conversely impacts monsoon onset and strength and eventually the drought and flood events in middle-low reaches of Yangtze River. (4) Frozen ground, including permafrost, is decaying both in QXP and in Northeast China. The most significant changes occurred in the regions with thickest seasonal frozen ground (SFG), i.e., inland QXP, then northeastern and northwestern QXP. The cold season air temperature is the main factor controlling SFG change. The increase of ground surface temperatures is more significant than air temperature. (5) The sea ice coverage over the Bohai Sea and Yellow Sea has deceased since the 1980s. (6) River ice duration and ice thickness is also decreasing in northern China. In 2001, the Chinese National Committee of World Climate Research Program/Climate and Cyosphere (WCRP/CliC) (CNC-CliC) was organized to strengthen research on climate and cryosphere in China. Future monitoring of the cryosphere in China will be enhanced both in spatial coverage and through the use of new techniques. Interactions between atmosphere/cryosphere/hydrosphere/land-surface will be assessed to improve our understanding of the mechanisms of cryospheric change.
基金the Nation Basic Research Program of China(973 Program,Research No.2007CB411500)
文摘On the basis of analyzing the importance of cryospheric researches in China and current status of cryospheric sciences in the world, this paper addresses key issues and main contents of present cryospheric sciences in China. The key issues currently addressed are: i) mechanisms of different types of glaciers in response to climate change and the scale-conversion in water resources assessments; ii) modeling of water and heat exchanges between frozen soil and vegetation; iii) parameterization of physical processes in cryosphere as well as coupling with climate models. To gain full clarification of these key issues, works of the following three aspects should be highlighted, i.e., cryospheric processes and responses to climate change, influences of cryospheric changes, and adaptation strategies for cryospheric changes.
文摘The cryosphere is the frozen part of the Earth’s system. Snow and ice are the main constituents of the cryosphere and may be found in different states, such as snow, freshwater ice, sea ice, perma-frost, and continental ice masses in the form of glaciers and ice sheets. The present review mainly deals with state-of-the-art applications of synthetic aperture radar (SAR) with a special emphasize on cryospheric information extraction. SAR is the most important active microwave remote sensing (RS) instrument for ice monitoring, which provides high-resolution images of the Earth’s surface. SAR is an ideal sensor in RS technology, which works in all-weather and day and night conditions to provide useful unprecedented information, especially in the cryospheric regions which are almost inaccessible areas on Earth. This paper addresses the technological evolution of SAR and its applications in studying the various components of the cryosphere. The arrival of SAR radically changed the capabilities of information extraction related to ice type, new ice formation, and ice thickness. SAR applications can be divided into two broad classes-polarimetric applications and interferometric applications. Polarimetric SAR has been effectively used for mapping calving fronts, crevasses, surface structures, sea ice, detection of icebergs, etc. The paper also summarizes both the operational and climate change research by using SAR for sea ice parameter detection. Digital elevation model (DEM) generation and glacier velocity mapping are the two most important applications used in cryosphere using SAR interferometry or interferometric SAR (InSAR). Space-borne InSAR techniques for measuring ice flow velocity and topography have developed rapidly over the last decade. InSAR is capable of measuring ice motion that has radically changed the science of glaciers and ice sheets. Measurement of temperate glacier velocities and surface characteristics by using airborne and space-borne interferometric satellite images have been the significant application in glaciology and cryospheric studies. Space-borne InSAR has contributed to major evolution in many research areas of glaciological study by measuring ice-stream flow velocity, improving understanding of ice-shelf processes, yielding velocity for flux-gate based mass-balance assessment, and mapping flow of mountain glaciers. The present review summarizes the salient development of SAR applications in cryosphere and glaciology.
文摘Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of object-oriented classification (OOC) algorithms employed for the extraction of information from remotely sensed satellite imageries. The state-of-the-art classifiers are reviewed for their potential usage in urban remote sensing (RS), with a special focus on cryospheric applications. Generally, classifiers for information extraction can be divided into three catalogues: 1) based on the type of learning (supervised and unsupervised), 2) based on assumptions on data distribution (parametric and non-parametric) and, 3) based on the number of outputs for each spatial unit (hard and soft). The classification methods are broadly based on the PBC or the OOC approaches. Both methods have their own advantages and disadvantages depending upon their area of application and most importantly the RS datasets that are used for information extraction. Classification algorithms are variedly explored in the cryosphere for extracting geospatial information for various logistic and scientific applications, such as to understand temporal changes in geographical phenomena. Information extraction in cryospheric regions is challenging, accounting to the very similar and conflicting spectral responses of the features present in the region. The spectral responses of snow and ice, water, and blue ice, rock and shadow are a big challenge for the pixel-based classifiers. Thus, in such cases, OOC approach is superior for extracting information from the cryospheric regions. Also, ensemble classifiers and customized spectral index ratios (CSIR) proved extremely good approaches for information extraction from cryospheric regions. The present review would be beneficial for developing new classifiers in the cryospheric environment for better understanding of spatial-temporal changes over long time scales.
基金supported by Chinese 973 Project (2007CB411503)Chinese COPES(GYHY200706005)Hundred Talent Project of Chinese Academy of Sciences
文摘In coordination with Global Cryosphere Watch (GCW) initiated by World Meteorology Administration (WMO), a regional ob- servation network is proposed based on existing stations/sites over High Asia and cryospberic elements required by GCW. Thus, High Asian Cryosphere (HAC) network is preliminary designed, composing of seven "supersites", each containing several refer- ence sites. The network covers major mountain ranges in High Asia, such as East Tianshan, Qilian, Tanggula, Nyainqentanglha, Himalayas as well as the central and eastern Qinghai-Xizang (Tibet) Plateau. Although multiple cryospberic elements were ob- served at the existing HAC network, many others, which are required by Integrated Global Observation System-Cryosphere Theme (IGOS-Cryosphere), are not yet included. More comprehensive observations are necessary to be included into "supersites" of HAC, so that the basic requirements for validation of satellite data, assimilation and coupled regional models can be met.
基金supported by the Gansu Provincial Science and Technology Program(22ZD6FA005)West Light Foundation of The Chinese Academy of Sciences(xbzg-zdsys-202306)+2 种基金Science Fund for Creative Research Groups of Gansu Province(Grant No.23JRRA567)Taishan Scholars Program of Shandong Province(No.tsqn202312158)Key Research and Development Program of Gansu Province(22YF7FA041)。
文摘Perfluoroalkyl acid analogs(PFAAs)are a class of chemically stable environmentally persistent organic pollutants(POPs)that are difficult to degrade and have a strong capacity to accumulate in the human body.PFAAs have been found to be biotoxic to humans and have been detected in various environmental media,especially in the cryosphere at trace concentrations.The cryosphere,sensitively responds to climate change,plays a crucial role in the global water,carbon and energy cycles.However,researches on cryosphere PFAAs especially in Tibetan Plateau(TP)is limited.Therefore,we summarize the physicochemical properties,physiological toxicity,spatiotemporal distribution,sources,diffusion and migration pathways,as well as analysis and removal methods of PFAAs in the cryosphere regions.The results show that PFAAs pollutants are mainly produced and distributed in the more economically developed countries in Europe and the United States,as well as in East Asia,and PFAAs can be transported by atmospheric circulation and water cycle to remote regions including cryosphere regions.The current detection methods for PFAAs in cryosphere need to be further refined for increased accuracy and convenience.There is also a need to develop more effective removal methods that will reduce the environmental and human threats posed by these PFAAs.Finally,we propose key scientific questions for future research in cryosphere including PFAAs redistribution influenced by cryosphere changes,human activities,and the interaction of other spheres.
基金partially funded by the Real-time Earthquake Risk Reduction for a Resilient Europe project (RISE) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement Number 821 115)provided by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 955 515 (SPIN ITN)by the Swiss National Science Foundation (SNSF) Sinergia grant CRSII5_183579
文摘The properties of laser signals are affected by deformation of the optical fibre through which they are transmitted.While this deformation dependence is undesirable in telecommunication,it can be exploited for the construction of novel seismic sensors that fill a niche in data acquisition where traditional seismometer arrays would be difficult to deploy.This includes densely populated urban centers,the oceans,volcanoes and the Earth’s polar regions.These notes complement a presentation on recent methodological developments and applications in fibre-optic seismology.The first part is focused on the use of distributed fibreoptic sensing in cryosphere research,and specifically the investigation of the internal structure and seismicity of glaciers and ice sheets.The second part is dedicated to recent advances in integrated fibre-optic sensing,with emphasis on novel measurement principles and sensitivity.
文摘1.Aims and scope.The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical,chemical and biological processes and their interactions,and on the response of arid regions to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of desert,oasis,loess,and aeolian landforms,etc.;and support integrated studies on mountain-desert-oasis system in arid watershed with water resources as masterstroke,so as to provide reliable technological support for water safety,ecology safety and food safety in arid regions.
文摘1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical.
文摘1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.
文摘1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical,chemical and biological processes and their interactions,and on the response of arid regions to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of desert,oasis,loess,and aeolian landforms,etc.;and support integrated studies on mountain-desert-oasis system in arid watershed with water resources as masterstroke,so as to provide reliable technological support for water safety,ecology safety and food safety in arid regions.
基金Supported by the National Key Research and Development Program of China(2013CBA01808)National Natural Science Foundation of China(41275078)National Science and Technology Support Program of China(2012BAC20B05)
文摘The cryosphere is a prominent factor in and an indicator of global climate change. It serves one of the most direct and sensitive feedbacks in the climate system, and plays an important role in the earth's climate system. Cryospheric research has attracted unprecedented attention in the context of global warming, and is now one of the most active areas in studies of global change, sustainable development, and the climate system. This paper addresses recent and potential future changes in the cryosphere both globally and within China under the background of global warming. Particular attention is paid to progress toward understanding the impacts of the Tibetan Plateau and Eurasian snow cover, Arctic and Antarctic sea ice, and permafrost and glaciers on Chinese climate. The future development of cryospheric research in China is also discussed.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) (2019QZKK0903)the National Natural Science Foundation of China (No. 42071017)+1 种基金the science and technology research program of the Chinese Academy of Sciences' Institute of Mountain Hazards and Environment (No.IMHE-ZDRW-03)the Alliance of International Science Organizations (ANSO) provided funding for a master's degree
文摘Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation and temperature)on the distribution of landslides in the eastern regions of the Himalayas is poorly understood.To address this,the current study analyzes the relationship between the spatial distribution of landslide characteristics and climatic variables from 2013 to 2021.Google Earth Engine(GEE)was employed to make landslide inventories using satellite data.The results show that 2163,6927,and 9601 landslides were heterogeneously distributed across the study area in 2013,2017,and 2021,respectively.The maximum annual temperature was positively correlated with the distribution of landslides,whereas precipitation was found to have a non-significant impact on the landslide distribution.Spatially,most of the landslides occurred in areas with maximum annual precipitation ranging from 800 to 1600 mm and maximum annual temperature above 15℃.However,in certain regions,earthquake disruptions marginally affected the occurrence of landslides.Landslides were highly distributed in areas with elevations ranging between 3000 and 5000 m above sea level,and many landslides occurred near the lower permafrost limit and close to glaciers.The latter indicates that temperature change-induced freeze-thaw action influences landslides in the region.Temperature changes have shown a positive correlation with the number of landslides within elevations,indicating that temperature affects their spatial distribution.Various climate projections suggest that the region will experience further warming,which will increase the likelihood of landslides in the future.Thus,it is crucial to enhance ground observation capabilities and climate datasets to effectively monitor and mitigate landslide risks.
基金Natural Science Foundation of China(41690141)Project of Chinese Academy of Sciences(XDA20100305).
文摘While the cryosphere may bring in adverse impacts on natural and built environment, it may also provide benefits resulting from cryosphere services. By looking into the effect of the cryosphere on human-being, the study develops a unified approach in the analysis of cryospheric risks and services, with one focusing on the adverse impacts by cryospheric hazards and another emphasizing on the benefits that people can obtain from the natural capitals in the cryosphere. Meanwhile, climate change could further alter and complicate the roles of the cryosphere, not only by the changes in risks to cryospheric hazards, but also the changes in services that could potentially add more risks. The study further proposed a risk-based approach for the development of climate adaptation in the cryosphere. The approach essentially takes options to reduce exposure and vulnerability of societies to cryospheric hazards, and to better manage natural capitals and demands together with enhancing utility of the cryosphere, so as to maintain the benefit of cryosphere services in a sustainable way. The study further addresses the role of cryosphere services in strengthening sustainable development in terms of its relation with the sustainable development goals (SDGs), and provides a preliminary results on how the services contributes to SDGs. Overall, the approach developed in this study creates a new way to comprehensively assess the effect of cryosphere changes on our society and identify measures to maximize the benefit while minimizing the risk in relation to the cryosphere.
基金supported by the US Office of Naval Research(N00014-13-1-0294)
文摘Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermalmechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physi cal arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a con tinuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelas tic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms,the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments, field measurements and numerical simulations supporting the fundamental research in waveice interaction models are discussed. We conclude with some outlook of future research needs in this field.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0405)National Nature Science Foundation of China(42077187)+2 种基金Chinese Academy of Sciences Young Crossover Team Project(JCTD-2022-18)the National Key Research and Development Program of China(2020YFA0607702)the"Western Light"-Key Laboratory Cooperative Research Cross-Team Project of Chinese Academy of Sciences,Innovative Groups in Gansu Province(20JR10RA038).
文摘Cryospheric meltwater is an important runoff component and it profoundly influences changes in water resources in the Tibetan Plateau.Significant changes in runoff components occur in the three-river headwater region(TRHR),which is an important part of“Chinese Water Tower”due to climate warming.However,these effects remain unclear owing to the sparse and uneven distribution of monitoring sites and limited field investigations.Quantifying the contribution of cryospheric meltwater to outlet runoff is a key scientific question that needs to be addressed.In this study,we analyzed 907 precipitation,river water,ground ice,supra-permafrost water,and glacier snow meltwater samples collected from October 2019 to September 2020 in the TRHR.The following results were obtained:(1)There was significant spatio-temporal variation in stable isotopes in different waters;(2)The seasonal trends of stable isotopes for different waters,the relationship between each water body and the local meteoric water line(LWML)confirmed that river water was mainly recharged by precipitation,supra-permafrost water,and glacier snow meltwater;(3)Precipitation,supra-permafrost water,and glacier snow meltwater accounted for 52%,39%,and 9%of river water,respectively,during the ablation period according to the end-member mixing analysis(EMMA);(4)In terms of future runoff components,there will be many challenges due to increasing precipitation and evaporation,decreasing snow cover,glacier retreat,and permafrost degradation.Therefore,it is crucial to establish the“star-machine-ground”observation networks,forecast extreme precipitation and hydrological events,build the“TRHE on the Cloud”platform,and implement systematic hydraulic engineering projects to support the management and utilization of water resources in the TRHR.The findings of environmental isotope analysis provide insights into water resources as well as scientific basis for rational use of water resources in the TRHR.
基金This research was supported by Yunnan University(YJRC3201702)the National Natural Science Foundation of China(Grant Nos.41761144075,41690142,41941015,41771075,41871096,41671057,41801052,41561016,41701061,41861013)the Ministry of Science and Technology(2013FY111400).
文摘As one of the five components of Earth's climatic system,the cryosphere has been undergoing rapid shrinking due to global warming.Studies on the formation,evolution,distribution and dynamics of cryospheric components and their interactions with the human system are of increasing importance to society.In recent decades,the mass loss of glaciers,including the Greenland and Antarctic ice sheets,has accelerated.The extent of sea ice and snow cover has been shrinking,and permafrost has been degrading.The main sustainable development goals in cryospheric regions have been impacted.The shrinking of the cryosphere results in sea-level rise,which is currently affecting,or is soon expected to affect,17 coastal megacities and some small island countries.In East Asia,South Asia and North America,climate anomalies are closely related to the extent of Arctic sea ice and snow cover in the Northern Hemisphere.Increasing freshwater melting from the ice sheets and sea ice may be one reason for the slowdown in Atlantic meridional overturning circulation in the Arctic and Southern Oceans.The foundations of ports and infrastructure in the circum-Arctic permafrost regions suffer from the consequences of permafrost degradation.In high plateaus and mountainous regions,the cryosphere's shrinking has led to fluctuations in river runoff,caused water shortages and increased flooding risks in certain areas.These changes in cryospheric components have shown significant heterogeneity at different temporal and spatial scales.Our results suggest that the quantitative evaluation of future changes in the cryosphere still needs to be improved by enhancing existing observations and model simulations.Theoretical and methodological innovations are required to strengthen social economies'resilience to the impact of cryospheric change.