期刊文献+
共找到442篇文章
< 1 2 23 >
每页显示 20 50 100
Revealing the exceptional cryogenic strength-ductility synergy of a solid solution 6063 alloy by in-situ EBSD experiments 被引量:1
1
作者 Youhong Peng Li Wang +3 位作者 Chenglu Liu Chao Xu Lin Geng Guohua Fan 《Journal of Materials Science & Technology》 2025年第5期313-322,共10页
A solid solution 6063 aluminium alloy features an exceptional combination of strength and ductility at 77 K.Here,the deformation mechanisms responsible for superior strength-ductility synergy and excellent strain hard... A solid solution 6063 aluminium alloy features an exceptional combination of strength and ductility at 77 K.Here,the deformation mechanisms responsible for superior strength-ductility synergy and excellent strain hardening capacity at a cryogenic temperature of the alloy were comparatively investigated by insitu electron backscatter diffraction(EBSD)observations coupled with transmission electron microscopy(TEM)characterization and fracture morphologies at both 298 and 77 K.It is found that kernel average misorientation(KAM)mappings and quantified KAM in degree suggest a higher proportion of geometrically necessary dislocations(GNDs)at 77 K.The existence of orientation scatter partitions at 77 K implies the activation of multiple slip systems,which is consistent with the results of potential slip systems calculated by Taylor axes.Furthermore,dislocation tangles characterized by brief and curved dislocation cells and abundant small dimples have been observed at 77 K.This temperature-mediated activation of dislocations facilitates the increased dislocations,thus enhancing the strain hardening capacity and ductility of the alloy.This research enriches cryogenic deformation theory and provides valuable insights into the design of high-performance aluminium alloys that are suitable for cryogenic applications. 展开更多
关键词 Aluminium alloy cryogenic temperature Strength-ductility synergy In-situ EBSD Deformation mechanisms
原文传递
A cryogenic 3.3-V supply,1.6% 3σ-accuracy all-CMOS voltage reference with 58-dB PSR@10 kHz in 0.18-μm CMOS
2
作者 Yupeng Yuan Yi Zhuo +5 位作者 Jianjun Tu Qingjiang Xia Yan Zhang Wengao Lu Xiangyang Li Ding Ma 《Journal of Semiconductors》 2025年第8期30-35,共6页
This brief presents a cryogenic voltage reference circuit designed to operate effectively across a wide temperature range from 30 to 300 K.A key feature of the proposed design is utilizing a current subtraction techni... This brief presents a cryogenic voltage reference circuit designed to operate effectively across a wide temperature range from 30 to 300 K.A key feature of the proposed design is utilizing a current subtraction technique for temperature compensation of the reference current,avoiding the deployment of bipolar transistors to reduce area and power consumption.Implemented with a 0.18-μm CMOS process,the circuit achieves a temperature coefficient(TC)of 67.5 ppm/K,which was not achieved in previous works.The design can also attain a power supply rejection(PSR)of 58 d B at 10 k Hz.Meanwhile,the average reference voltage is 1.2 V within a 1.6%3σ-accuracy spread.Additionally,the design is characterized by a minimal power dissipation of 1μW at 30 K and a compact chip area of 0.0035 mm~2. 展开更多
关键词 voltage reference TC compensation high accuracy cryogenic CMOS MOS-based extreme environment
在线阅读 下载PDF
Mechanisms of ductile-to-brittle transition in Sn−3.0Ag−0.5Cu solder alloy at cryogenic temperature
3
作者 Sheng-li LI Chun-jin HANG +7 位作者 Qi-long GUAN Xiao-jiu TANG Ning ZHOU Yan-hong TIAN Wei ZHANG Dan YU Ying DING Xiu-li WANG 《Transactions of Nonferrous Metals Society of China》 2025年第4期1281-1291,共11页
The inherent brittle behavior and ductile-to-brittle transition(DBT)mechanism of Sn−3.0Ag−0.5Cu(SAC305)solder alloy at the liquid nitrogen temperature(LNT,77 K)were investigated through uniaxial tensile experiments co... The inherent brittle behavior and ductile-to-brittle transition(DBT)mechanism of Sn−3.0Ag−0.5Cu(SAC305)solder alloy at the liquid nitrogen temperature(LNT,77 K)were investigated through uniaxial tensile experiments conducted at different temperatures.Dynamic recovery and recrystallization of SAC305 solder alloy at room temperature(RT,293 K)activate a softening process.Conversely,intersecting and none-intersecting deformation twins,embedded in body-centered tetragonal Sn,enhance tensile strength and stabilize strain hardening rate,while suppressing the elongation of the alloy at LNT.The irreconcilable velocity difference between twin thickening(~8μm/s)and dislocation slip(4μm/s)results in premature brittle fracture,during the linear hardening and DBT.Moreover,the secondary phases degrade the mechanical property of SAC305 solder alloy,and micro-cracks appear between Cu_(6)Sn_(5)and Ag_(3)Sn in the eutectic matrix. 展开更多
关键词 SAC305 deformation twinning secondary phases tensile property cryogenic temperature
在线阅读 下载PDF
Atomic-scale investigation of the mechanisms of deformation-induced martensitic transformation at ultra-cryogenic temperatures
4
作者 Suning Li Philip J.Withers +1 位作者 Weiqiang Chen Kun Yan 《Journal of Materials Science & Technology》 2025年第7期138-150,共13页
Liquefied natural gas storage and transportation as well as space propulsion systems have sparked inter-est in the martensitic transformation and behaviours of 316 L stainless steels(SS)under ultra-cryogenic deformati... Liquefied natural gas storage and transportation as well as space propulsion systems have sparked inter-est in the martensitic transformation and behaviours of 316 L stainless steels(SS)under ultra-cryogenic deformation.In this study,high-resolution transmission electron microscopy(HRTEM)and molecular dy-namics(MD)simulations were used to investigate the atomic arrangements and crystalline defects of deformation-induced γ-austenite→ε-martensite→α'-martensite and γ→α'martensitic transforma-tions in 316 L SS at 15 and 173 K.Theγ→εtransformation involves the glide of Shockley partial dislocations on(111)γplanes without a change in atomic spacing.The formation of anα'inclusion in a singleε-band is achieved by a continuous lattice distortion,accompanied by the formation of a tran-sition zone ofα'and the expansion of the average atomic spacings due to dislocation shuffling.Asα'grows further intoγ,the orientation relationship(OR)of theα'changes by lattice bending.This pro-cess follows the Bogers-Burgers-Olson-Cohen model despite it not occurring on intersecting shear bands.Stacking faults and twins can also serve as nucleation sites forα'at 173 K.We also found that direct transformation of γ→α'occurs by the glide of √6aγ[11(2)]/12 dislocations on every(111)γplane with misfit dislocations.Overall,this study provides,for the first time,insights into the atomic-scale mech-anisms of various two-step and one-step martensitic transformations induced by cryogenic deformation and corresponding local strain,enhancing our understanding of the role of martensitic transformation under ultra-cryogenic-temperature deformation in controlling the properties. 展开更多
关键词 cryogenic temperature Austenitic stainless steels Atomic arrangements HRTEM Martensitic transformation
原文传递
Effect of quenching,lamellarizing,and tempering heat treatment on cryogenic toughness of ZG14Ni3Cr1MoV steel
5
作者 Chang-fu Li Yun-bao Gao +5 位作者 Bao-zhi Li Ling Zhao Yu Wang Hai-jun Zhang Qiu Du Zeng-rui Wang 《China Foundry》 2025年第4期407-416,共10页
The present work aims to investigate the effects of quenching, lamellarizing, and tempering(QLT)heat treatment on the microstructure and mechanical properties of ZG14Ni3Cr1Mo V high-strength low-alloy(HSLA) steel by c... The present work aims to investigate the effects of quenching, lamellarizing, and tempering(QLT)heat treatment on the microstructure and mechanical properties of ZG14Ni3Cr1Mo V high-strength low-alloy(HSLA) steel by comparing with traditional quenching and tempering(QT) heat treatment. Following the various QLT heat treatments, a dual-phase microstructure consisting of “soft” ferrite and “hard” tempered bainite is obtained, exhibiting significantly refined grain sizes(38.87 to 46.51 μm for QLT samples) compared to QT samples(64.93 μm). As the lamellar quenching temperature increases from 750 ℃ to 810 ℃, the yield strength and tensile strength of the QLT samples increase, although they remain lower than those of the QT samples. Conversely, elongation at fracture, reduction of area, and the product of strength and elongation synergy decrease, yet consistently exceed QT levels. Notably, the QLT samples demonstrate superior cryogenic impact toughness within the range of-80 ℃ to-120 ℃, achieving optimal values after 910 ℃ quenching + 780 ℃ lamellar quenching + 670 ℃ tempering: 215.97 J at-80 ℃, 207.80 J at-100℃, and 183.17 J at-120 ℃. This exceptional cryogenic toughness is attributed to two key mechanisms in the dual-phase microstructure:(i) a low dislocation density that suppresses crack initiation, and(ii) crack-tip passivation by soft ferrite, coupled with crack deflection and hindrance at high-angle grain boundaries(HAGBs). The results establish QLT as a viable method for enhancing cryogenic toughness in ZG14Ni3Cr1Mo V HSLA steels. 展开更多
关键词 high-strength low-alloy steels ZG14Ni3Cr1MoV steel QUENCHING lamellarizing TEMPERING cryogenic toughness MICROSTRUCTURE
在线阅读 下载PDF
Characterization and optimization of a cryogenic pure CsI detector with remarkable light yield and unprecedented energy resolution for CLOVERS experiment
6
作者 Chen-Guang Su Qian Liu +4 位作者 Ling-Quan Kong Shi Chen Kimiya Moharrami Yang-Heng Zheng Jin Li 《Nuclear Science and Techniques》 2025年第5期79-87,共9页
In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a rema... In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment. 展开更多
关键词 cryogenic CsI detector Light yield Energy resolution Scintillation decay time Light yield optimization CLOVERS CEνNS
在线阅读 下载PDF
Effect of deep cryogenic treatment on microstructure and mechanical properties of AlCoCrFeNi_(2.1) eutectic high-entropy alloy
7
作者 Si-ruo Zhang Cheng-hao Liu +5 位作者 Hao Qi Hao-kai Wu Guang-yu Yang Ting-shuai Tan Ying-dong Qu Guang-long Li 《China Foundry》 2025年第3期352-362,共11页
As a typical eutectic high-entropy alloy(EHEA),AlCoCrFeNi2.1 exhibits excellent casting properties.However,the imbalance between strength and plasticity hinders its application as an advanced structural material.In or... As a typical eutectic high-entropy alloy(EHEA),AlCoCrFeNi2.1 exhibits excellent casting properties.However,the imbalance between strength and plasticity hinders its application as an advanced structural material.In order to address this challenge,deep cryogenic treatment(DCT)as a new process applied in the field of EHEAs was proposed in this study.The effects of different DCT times on the microstructure and mechanical properties of AlCoCrFeNi2.1 EHEAs were studied,mainly focusing on the flake structure of FCC+B2 layer.The experimental results suggest that with the extension of the DCT time,the dislocation density in the FCC phase increases significantly.The spherical BCC precipitate phase is generated within the B2 phase,and the average size of this newly generated precipitate phase gradually decreases.Increasing the number of dislocations and precipitate phases is of great significance to improve the mechanical properties.The AlCoCrFeNi2.1 EHEA exhibits excellent comprehensive mechanical properties after DCT for 36 h.Compared with the as-cast state,the tensile strength at room temperature reaches 1,034.51 MPa,increased by 5.74%.The plasticity reaches 21.72%,which is increased by 11.79%.The results show that the tensile strength and ductility of AlCoCrFeNi2.1 EHEAs are balanced and improved after DCT,which are more suitable as advanced structural materials.In addition,the introduction of the DCT process to EHEAs solves the problem of environmental pollution caused by traditional heat treatment process.This study provides useful guidance for using the DCT process to strengthen the mechanical properties of“lamellar+block”type EHEAs. 展开更多
关键词 deep cryogenic treatment(DCT) eutectic high-entropy alloy(EHEA) DISLOCATION PRECIPITATE mechanical properties
在线阅读 下载PDF
Characterization and properties of soft magnetic (Fe_(0.5)Co_(0.5))_(75)B_(21)Nb_(4) metallic glasses subjected to cryogenic treatment and relaxation annealing
8
作者 Zongqi Xiao Xingyu Zhou +3 位作者 Xin Zhang Qikun Huang Li Cai Yan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1955-1964,共10页
The effect of cryogenic treatment(CT)and relaxation annealing on the average nearest neighboring distance of atom(dm),ther-modynamic stability,soft magnetic properties,microhardness(Hv),and corrosion resistance of as-... The effect of cryogenic treatment(CT)and relaxation annealing on the average nearest neighboring distance of atom(dm),ther-modynamic stability,soft magnetic properties,microhardness(Hv),and corrosion resistance of as-spun(Fe_(0.5)Co_(0.5))_(75)B_(21)Nb_(4) metallic glasses(MGs)is studied.On the premise of maintaining a fully amorphous phase,appropriate CT and relaxation annealing are conducive to achieving the synergistic effect of increasing saturation magnetization(M_(s))and reducing coercivity(H_(c)).Shallow CT at 213 K optim-ally enhances the soft magnetic properties of MGs.Given its low activation energy of nucleation and increased activation energy of growth,appropriate CT is beneficial for achieving uniform annealed nanocrystals in amorphous phases.The correlation between free volumes(FVs)and potential energy suggests that the variation in Hc depends on the expansion and contraction behavior of amorphous phases after different CT processes.The fitting formulas of H_(c)–d_(m) and Ms–Hv correlations demonstrate that soft magnetic parameters have a solid linear relationship with the contents of FVs and degree of dense random packing.Moreover,pitting resistance is improved by ap-propriate CT and relaxation annealing.This improvement is characterized by the promotion of the stability of the Nb-rich passive film formed during electrochemical corrosion in 3.5wt%NaCl solution. 展开更多
关键词 metallic glass cryogenic treatment relaxation annealing soft-magnetic properties corrosion resistance
在线阅读 下载PDF
Plastic deformation mechanism of Mg-Gd-Y-(Sm)-Zr alloys at room and cryogenic temperature
9
作者 Yan-Bo Pei En-Bo Wei +3 位作者 Meng-Jia Yao Meng-Hua Yu Mao-Sheng Zhao Bu-Gang Teng 《Rare Metals》 2025年第4期2778-2790,共13页
In this study,Mg-Gd-Y-(Sm)-Zr(GW-(Sm))alloys were subjected to compression tests at both 293 and 77 K.The effect of Sm addition on the plastic deformation mechanism of Mg-Gd-Y-Zr(GW)alloy was investigated,and a detail... In this study,Mg-Gd-Y-(Sm)-Zr(GW-(Sm))alloys were subjected to compression tests at both 293 and 77 K.The effect of Sm addition on the plastic deformation mechanism of Mg-Gd-Y-Zr(GW)alloy was investigated,and a detailed analysis was conducted on the relationships between mechanical responses and the microstructure of the alloys.The findings suggest that dislocation slip plays a predominant role in the plastic deformation of GW-(Sm)alloys.The addition of Sm reduces the stacking fault energy(SFE)of the alloy,which promotes<c+a>slip and inhibits twinning.Meanwhile,Sm plays a role in solution strengthening,causing an elevation in the flow stress of the alloy.At cryogenic temperature(CT),the critical resolved shear stress(CRSS)of dislocation slip is increased,so the dislocation motion requires greater external force.In addition,the extensive crossed twins exhibited in the microstructure,which shorten the dislocation slip path and enhance the grain boundary strengthening.This research contributes to the advancement of plastic deformation theories for magnesium-rare earth(Mg-RE)alloys. 展开更多
关键词 Deformation mechanism Microstructure evolution TWINNING cryogenic temperature Mg-Gd-Y-(Sm)-Zr alloys
原文传递
Cryogenic forging effects and mechanisms on surface coarse grain microstructure in H-shaped 7050 aluminum forgings
10
作者 ZHAO Zi-han YI You-ping +2 位作者 HU Jian-liang HUANG Shi-quan HE Hai-lin 《Journal of Central South University》 2025年第6期2009-2021,共13页
This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace appl... This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace applications.The PCF process,utilizing cryogenic deformation,significantly refines the coarse grains at the surface of the forgings,resulting in a finer and more uniform microstructure,thereby effectively addressing the issue of surface coarse grains associated with traditional methods.The findings indicate that the PCF process can accumulate higher stored energy,facilitating static recrystallization(SRX)during subsequent heat treatment and enhancing the microstructural uniformity.Utilizing various analytical techniques,including optical microscopy(OM),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).This study reveals the superiority of the PCF process in terms of strain accumulation,dislocation density,and grain refinement.In conclusion,this method offers advantages in enhancing the performance and microstructural uniformity of 7050 aluminum forgings,presenting new opportunities for applications in the aluminum forging industry. 展开更多
关键词 7050 aluminum alloy cryogenic forging coarse grains dislocation density stored energy
在线阅读 下载PDF
Achieving further refinement of grain structure and improvement of mechanical properties in Al-12Si-4Cu-2Ni-1Mg alloy by Al-Ti-C-B master alloy addition and deep cryogenic treatment
11
作者 Lin-fei Xia Wen-bo Li +2 位作者 Zuo-shan Wei Yu-ying Wu Xiang-fa Liu 《China Foundry》 2025年第1期75-82,共8页
Near-eutectic Al-Si alloys are widely used in automotive manufacturing due to their superior wear resistance and high temperature performance.Because of high Si content,the grain refinement of near-eutectic Al-Si allo... Near-eutectic Al-Si alloys are widely used in automotive manufacturing due to their superior wear resistance and high temperature performance.Because of high Si content,the grain refinement of near-eutectic Al-Si alloy has been a problem for many years.In this study,the effect of deep cryogenic treatment(DCT)on the microstructure and mechanical properties of Al-12Si-4Cu-2Ni-Mg alloy with addition of Al-Ti-C-B master alloy was fully investigated.Results show that the average grain size of the alloy is greatly reduced from 0.92 mm to 0.50 mm,and the eutectic Si and Al7Cu4Ni precipitates are spheroidized and refined in Al-12Si-4Cu-2Ni-Mg after DCT for 24 h and aging treatment.Thereby these changes of microstructures result in a significant increment of about 22.5%in elongation and a slight enhancement of about 6.8%in tensile strength.Moreover,the refinement of microstructure also significantly improves the fatigue life of the alloy. 展开更多
关键词 deep cryogenic treatment near-eutectic Al-Si master alloy microstructure mechanical properties
在线阅读 下载PDF
Serrated flow behavior mediated via nano-twinning and phase transformation in FeCoCrNiMo0.2 high-entropy alloy at cryogenic temperatures
12
作者 Fei Chen Fei Liu +5 位作者 Yuan-Biao Tan Wei Shi Xuan-Ming Ji Hao Fu Si-Yuan Wei Song Xiang 《Rare Metals》 2025年第5期3447-3459,共13页
The serrated flow behavior,known as the Portevin-Le Chatelier(PLC)effect,is commonly observed during high-temperature deformation.In this study,we report a serrated flow behavior in FeCoCrNiMo0.2 high-entropy alloy(HE... The serrated flow behavior,known as the Portevin-Le Chatelier(PLC)effect,is commonly observed during high-temperature deformation.In this study,we report a serrated flow behavior in FeCoCrNiMo0.2 high-entropy alloy(HEA),which is mediated by nano-twinning and phase transformation at cryogenic temperatures.During uniaxial tensile deformation at 77 K,the alloy exhibited the formation of high-density deformation nano-twinning,cross-twinning,stacking faults(SFs)and Lomer-Cottrell locks(L-C locks).Additionally,the lower stacking fault energy(SFE)at low temperatures promotes the formation of the 9R phase.The high-density twin boundaries effectively hinder dislocation movement,leading to the instability of plastic deformation and promoting the serrated flow behavior.Furthermore,the rapid and unstable transformation of the 9R phase contributes to the pronounced serrated flow behavior.Nano-twinning,SFs,cross-twinning,L-C locks and 9R phase collectively induce a dynamic Hall-Petch effect,enhancing the strength-ductility synergy and strain-hardening ability of deformed alloy at 77 K.Our work provides valuable insights into the mechanism of tensile deformation at cryogenic temperatures in single-phase FCC HEA. 展开更多
关键词 High-entropy alloys Serrated flow behavior Nano-twinning Phase transformation cryogenic temperature
原文传递
Combination of cryogenic and pulsed electric field treatment for enhanced microstructure and mechanical properties of WC-Co cemented carbides
13
作者 Ming-Yuan Ma Song-Han Hu +4 位作者 Ying-Chun Diao Kai Wang Guo-Jian Li Wang-Zhong Mu Qiang Wang 《Rare Metals》 2025年第5期3547-3561,共15页
In this work,we aim to develop a novel post-treatment process combining cryogenic and pulsed electric field treatment to enhance WC-Co cemented carbides.The results show a 15.62%increase in hardness from 1831.38 to 21... In this work,we aim to develop a novel post-treatment process combining cryogenic and pulsed electric field treatment to enhance WC-Co cemented carbides.The results show a 15.62%increase in hardness from 1831.38 to 2117.38 HV30,a 9.60%rise in fracture toughness from 9.06 to 9.93 MPa·m^(1/2),while the friction coefficient decreases from 0.63 to 0.47.Through the residual stress evolution,WC orientation change and the martensitic transformation of Co,and the internal enhancement mechanism of cryogenic combined with pulsed electric field treatment are revealed.The electron wind generated by the pulsed electric field can efficiently reduce the residual stress induced by cryogenic process.The evolution of residual stress promotes the base slip of WC,increasing the degree of{0001}orientation.In addition,the degree of martensitic transformation of Co intensifies,with the hcp-Co/fcc-Co ratio rising from 0.41%to 17.86%.The enhanced WC{0001}orientation and increased hcp-Co content contribute to significant improvements in hardness and wear resistance.This work provides a novel efficient enhancement strategy for ceramics and alloys,with the potential to be a mainstream strengthening method in the future. 展开更多
关键词 Cemented carbides Pulsed electric field cryogenic treatment Martensitic transformation Residual stress
原文传递
Unraveling the cryogenic formability in high entropy alloy sheets under complex stress conditions
14
作者 Ke-Yan Wang Zi-Jian Cheng +6 位作者 Zhi-Liang Ning Hai-Ping Yu Parthiban Ramasamy Jürgen Eckert Jian-Fei Sun Alfonso H.W.Ngan Yong-Jiang Huang 《Rare Metals》 2025年第2期1332-1341,共10页
This work investigates how temperature and microstructural evolution affect the formability of face-centered cubic(fcc)structured CoCrFeNiMn_(0.75)Cu_(0.25) high entropy alloy(HEA)sheets under complex stress condition... This work investigates how temperature and microstructural evolution affect the formability of face-centered cubic(fcc)structured CoCrFeNiMn_(0.75)Cu_(0.25) high entropy alloy(HEA)sheets under complex stress conditions.Erichsen cupping tests were conducted to quantitatively evaluate the deformation capacity at room temperature(298 K)and cryogenic temperatures.The findings reveal a strong temperature dependence on the formability of the HEA.A decrease in the deformation temperature from 298 to 93 K causes a significant increase in both the Erichsen index(IE)(from 9.8 to 12.4 mm)and the expansion rate(δ)of surface area(from 51.6%to 76.3%),as well as a reduction in the average deviation(η)of thickness(from 55.1%to 44.4%),signifying its ultrahigh formability and uniform deformation capability at cryogenic temperature.This enhancement is attributed to the transition in the deformation mechanism from single dislocation slip at 298 K to a cooperative of plastic deformation mechanisms at 93 K,involving dislocation slip,stacking faults(SFs),Lomer-Cottrell(L-C)locks and multi-scale nanotwins.The lower stacking fault energy of the alloy facilitates these deformation mechanisms,particularly the formation of SFs and nanotwins,which enhance ductility and strength by providing additional pathways for plastic deformation.These mechanisms collectively contribute to delaying plastic instability,thereby improving the overall formability.This work provides a comprehensive understanding of the underlying reasons for the enhanced formability of HEAs at cryogenic temperatures,offering valuable insights for their practical use in challenging environments. 展开更多
关键词 High entropy alloys cryogenic formability Deformation mechanism Complex stress
原文传递
Crack sensitivity of high-manganese cryogenic steels in initial solidification during continuous casting
15
作者 Yang Li Johann Winkler +3 位作者 Peter Presoly Christian Bernhard Xu-feng Qin Chang-gui Cheng 《Journal of Iron and Steel Research International》 2025年第3期682-694,共13页
Cryogenic steels,i.e.,steels with maximum toughness at particularly low temperature,are increasingly becoming the focus of research.Cryogenic steels are usually alloyed with 5%–9%nickel.Ni can also be substituted by ... Cryogenic steels,i.e.,steels with maximum toughness at particularly low temperature,are increasingly becoming the focus of research.Cryogenic steels are usually alloyed with 5%–9%nickel.Ni can also be substituted by manganese as an austenite former.These high-manganese cryogenic grades are a cost-effective alternative to nickel-alloyed steels for use in liquefied natural gas storage tanks.The Mn content can then be more than 20 wt.%and lead to problems in production,particularly in the continuous casting process.In continuous casting of high-Mn-grades,quality issues and even breakout may result from the initial solidification behavior of the steel grades at high temperatures.Hot cracks form when a critical load is exceeded during solidification,close to the solidus temperature of the steel.A selected high-Mn-steel grade was characterized with respect to liquidus and solidus temperatures by means of thermal analysis and computational thermodynamics.In addition,so-called submerged split chill tensile tests were carried out to further understand the crack sensitivity of the solidifying shell for high-manganese cryogenic steels.The results reveal the presence of coarse hot tears,and also,a high frequency of hot cracks was observed at the location with the maximum accumulated strain,which is in line with the applied cracking criterion of Pierer and Bernhard for this investigation.In summary,the initial solidification phase of continuous casting poses a high risk of cracking for high-manganese cryogenic steel. 展开更多
关键词 High-manganese cryogenic steel Submerged split chill tensile test Crack sensitivity Initial solidification Hot crack
原文传递
Designing gadolinium-transition metals-based perovskite type high entropy oxides with good cryogenic magnetocaloric performances
16
作者 Junli Lin Xin Wang +2 位作者 Fengying Chen Hai-Feng Li Lingwei Li 《Journal of Materials Science & Technology》 2025年第4期317-323,共7页
Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Desi... Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Designing novel magnetic materials with good magnetocaloric performance is a prerequisite for practical applications.In this study,three gadolinium-transition metal-based high entropy oxides(HEOs)of Gd(Fe_(1/4)Ni_(1/4)Al_(1/4)Cr_(1/4))O_(3),Gd(Fe_(1/5)Ni_(1/5)Al_(1/5)Cr_(1/5)Co_(1/5))O_(3),and Gd(Fe_(1/6)Ni_(1/6)Al_(1/6)Cr_(1/6)Co_(1/6)Mn_(1/6))O_(3)were designed and systematically characterized regarding their structural and cryogenic magnetic properties.These HEOs were confirmed to crystallize into a single-phase perovskite-type orthorhombic structure with a homogeneous microstructure,reveal a second-order magnetic transition at low temperatures,and exhibit significant cryogenic MCEs.The magnetocaloric performances of the present HEOs,identified by magnetic entropy changes,relative cooling power,and temperature-averaged entropy changes,were com-parable with recently reported candidate materials.The present study indicates potential applications for cryogenic magnetic cooling of the present HEOs and provides meaningful clues for designing and exploring HEOs with good cryogenic magnetocaloric performances. 展开更多
关键词 High entropy oxides Transition metal Magnetocaloric properties cryogenic magnetic refrigeration
原文传递
All-Cellulose Composites Fabricated by Partially Dissolving Wood Pulp in Cryogenic Aqueous Phosphoric Acid
17
作者 METASEBIA Gizaw WANG Bijia +1 位作者 FENG Xueling RONG Liduo 《Journal of Donghua University(English Edition)》 2025年第4期380-390,共11页
All-cellulose composites(ACCs)are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase.ACC consists entirely of cellulose,and since the reinforcement phase and the matrix have e... All-cellulose composites(ACCs)are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase.ACC consists entirely of cellulose,and since the reinforcement phase and the matrix have exactly the same chemical properties,they can overcome the problem of poor fiber-matrix adhesion in biocomposites.In this study,ACC was prepared by partially dissolving wood pulp in a cryogenic aqueous phosphoric acid solution,and the effects of dissolution temperature,dissolution time and pressing load on the properties of ACC were investigated.The results showed that a dissolution time of 45 min achieved the optimal reinforcement-matrix ratio.The use of an aqueous ethanol solution at an ethanol mass fraction of 50%as a coagulation bath and a pressing load of 3000 kg during the drying process achieved the best mechanical properties of ACC,with a tensile strength of 49.3 MPa(approximately 210%higher than that of the untreated wood pulp)and an elastic modulus of 1.6 GPa(approximately 122%higher than that of the untreated wood pulp).The composite’s compactness affected ACC’s mechanical properties.The air permeability analysis showed that the barrier performance of ACC was also significantly better than that of the untreated wood pulp.With a pressing load of 3500 kg,the surface water contact angle(WCA)increased to 110.3°(approximately 94%higher than that of the untreated wood pulp),and the air permeability was significantly reduced to 1.1 mm/s,showing its good application prospects in the field of green packaging materials. 展开更多
关键词 cellulose all-cellulose composite(ACC) cryogenic phosphoric acid partial dissolution(PD) sustainable material
在线阅读 下载PDF
Influence of cryogenic treatment on mechanical and ballistic properties of AA5754 alloy friction stir welded joints
18
作者 V.Manoj Mohan Prasath S.Dharani Kumar Saurabh S.Kumar 《Defence Technology(防务技术)》 2025年第4期184-198,共15页
In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-pierc... In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-piercing(AP)bullet at an impact velocity of 682±20 m/s.The FSW technique was used to prepare the welded samples for AA5754,with an axial force of 7 kN,a feed rate of 20 mm/min,and a speed of 1200 rpm.The cryogenic treatments performed after welding,including deep cryogenic treatment(DCT)at196℃ and shallow cryogenic treatment(SCT)at80℃,for 6 and 72 h,respectively.The microstructure and mechanical characteristics of cryogenically treated and untreated joints were examined.The cryogenic treatment refined the grain size(1.05 μm)and enhanced the microhardness(93 Hv).Moreover,DCT-FSW significantly improved the tensile strength(13.93%)and impact strength(8.45%)compared to untreated FSW sample.Additionally,in untreated FSW samples,the fracture behaviour varied:the impact fracture mode primarily exhibited ductile failure,while the tensile fracture exhibited a mixed fracture mode.In contrast,the tensile and impact fracture modes of the DCT-FSWwere dominated by a ductile failure mode.The DCT-FSW target demonstrated a lower depth of penetration(DOP)of 31 mm compared to the SCT-FSWand untreated FSW targets.Post-ballistic SEM analysis in the crater region of all three zones revealed the formation of frictional grooves,small cracks,and adiabatic shear bands(ASBs). 展开更多
关键词 AA5754 alloy Ballistic and mechanical properties cryogenic treatment Depth of penetration
在线阅读 下载PDF
Amelioration of Mechanical Properties of Rolled Mg-4.5Al-2.5Zn Alloy by Cryogenic Cycling Treatment
19
作者 Haoran Pang Liwei Lu +4 位作者 Gongji Yang Xiaojun Wang Wen Wang Hua Zhang Yujuan Wu 《Acta Metallurgica Sinica(English Letters)》 2025年第8期1436-1452,共17页
In this study,cryogenic cycling treatment was used to process the hot-rolled Mg-4.5Al-2.5Zn alloy sheets to research the influence on mechanical properties and microstructure.Optical microscopy,electron back-scatter d... In this study,cryogenic cycling treatment was used to process the hot-rolled Mg-4.5Al-2.5Zn alloy sheets to research the influence on mechanical properties and microstructure.Optical microscopy,electron back-scatter diffraction and transmission electron microscopy were applied to characterize the microstructures and analyze the mechanisms.The consequences indicate that the cryogenic cycling treatment has significantly influence on improving the mechanical properties.With the cycle of cryogenic cycling treatment increasing to 5 cycles,the sample processed by 3 cycles presents the highest ductility(~18.6%),while the 4-cycle one shows the highest strength(~311.8 MPa).The improvement can be attributed to fine grains,introduced high-density dislocation,9.8%-fraction low-angle grain boundaries(LAGBs),the precipitation of Mg17Al12 phase and the texture with the intensity of 17.5.Although the average grain sizes of the samples processed by cryogenic cycling treatment have no obvious difference,internal stress variations induced by cryogenic cycling treatment significantly influence LAGBs,the basal texture evolution,and the prismaticslip,pyramidal<c>slip and pyramidal<c+a>slip activation. 展开更多
关键词 Mg-4.5Al-2.5Zn alloy cryogenic cycling treatment Microstructure Mechanical properties
原文传递
Mechanical properties and flow stress constitutive relationship of Ti–6Al–4V alloy with equiaxed microstructure at cryogenic temperatures
20
作者 Jingwen HU Xun CHEN +1 位作者 Yashun WANG Chen YANG 《Chinese Journal of Aeronautics》 2025年第1期365-379,共15页
This paper investigates the uniaxial tensile mechanical properties and flow behavior of Ti-6Al-4V alloys with equiaxed microstructure at cryogenic temperatures ranging from 77 K to298 K and strain rates from 10^(-4)/s... This paper investigates the uniaxial tensile mechanical properties and flow behavior of Ti-6Al-4V alloys with equiaxed microstructure at cryogenic temperatures ranging from 77 K to298 K and strain rates from 10^(-4)/s to 10^(-2)/s.Scanning electron microscopy is utilized to analyze the fracture morphology,aiming to reveal the fracture behavior at various temperatures.The applicability of the Zener-Hollomon parameter and the Johnson-Cook model in describing the flow stress of Ti-6Al-4V at cryogenic temperatures is analyzed.Moreover,a constitutive relationship modeling method based on the variational recurrent networks is proposed.Mechanical test results show a significant increase in the strength of equiaxed Ti-6Al-4V alloy under cryogenic conditions while the plastic deformation process is shortened.However,the fracture analysis indicates that even at 77 K,the fracture process is still dominated by ductile fracture,and brittle fracture does not occur within the range of 77 K to 298 K.The fitting results validate the performance of the Zener-Hollomon parameter and the Johnson-Cook model in describing the deformation flow stress of Ti-6Al-4V alloy at cryogenic temperatures.The results also indicate that the proposed constitutive relationship modeling method based on the variational recurrent network performs better,making it a potential method for widespread applications. 展开更多
关键词 Titanium alloys Mechanical properties cryogenics Fracture testing Flow behavior
原文传递
上一页 1 2 23 下一页 到第
使用帮助 返回顶部