Heavy metal pollution poses serious risks to the human health and the natural environment,and there is an urgent need to develop efficient heavy metal removal technologies.The adsorption strategy is one of the most fa...Heavy metal pollution poses serious risks to the human health and the natural environment,and there is an urgent need to develop efficient heavy metal removal technologies.The adsorption strategy is one of the most famous strategies for the capture of heavy metal ions.In recent years,hyper crosslinked polymers(HCPs),a kind of hyper crosslinked porous material prepared by Friedel-Crafts alkylation reaction,have attracted more and more attention because of their advantages of ultra-light framework,wide range of building monomers,easy modification and functionalization.This review focuses on the advances of HCPs in the efficient applications to the removal of heavy metal ions.The fundamentals are presented including physicochemical properties,adsorption mechanism,and preparation strategies.Subsequently,the application and influencing factors of HCPs toward heavy metal ion adsorption are discussed in detail.Furthermore,the opportunities and challenges of HCPs in this promising research field are summarized and anticipated.We are convinced that the advanced HCP-based materials will make further contributions to heavy metal removal in wastewater treatment,further paving the way of advancing researches in this field.展开更多
Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simp...Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.展开更多
A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p ty...A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p type planar perovskite solar cells(PSCs).P65 is obtained from a low-cost and easily synthesized spiro[fluorene-9,90-xanthene]-30,60-diol(SFX-OH)-based monomer X65 through a freeradical polymerization reaction.The combination of a three-dimensional(3 D)SFX core unit,holetransport methoxydiphenylamine group,and crosslinked polyvinyl network provides P65 with good solubility and excellent film-forming properties.By employing P65 as a dopant-free hole-transport layer in conventional n-i-p type PSCs,a power conversion efficiency(PCE)of up to 17.7%is achieved.To the best of our knowledge,this is the first time a 3 D,crosslinked,polymeric dopant-free HTM has been reported for use in conventional n-i-p type PSCs.This study provides a new strategy for the future development of a 3 D crosslinked polymeric dopant-free HTM with a simple synthetic route and low-cost for commercial,large-scale applications in future PSCs.展开更多
Castor oil polyurethane/poly(methyl methacrylate) AB crosslinked polymers (ABCP) were synthesized by free radical copolymerization of MMA and vinyl-terminated castor oil polyurethane which was obtained from isocyanate...Castor oil polyurethane/poly(methyl methacrylate) AB crosslinked polymers (ABCP) were synthesized by free radical copolymerization of MMA and vinyl-terminated castor oil polyurethane which was obtained from isocyanate-terminated castor oil polyurethane and hydroxyethyl methacrylate The mechanical properties, transition and relaxation, as well as compatibility and morphology of the ABCP were investigated by changing the component. The results show that the ABCP is a semicompatible system and the compatibility of the two components decreases with increasing content of the hard segment. The mechanical and damping properties of the ABCP are obviously superior to that of their homopolymers. The damping value is mainly controlled by cross[ink density of the ABCP but the T-g value by component.展开更多
Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes pl...Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore,they can be utilized to fabricate smart actuators,which have potential applications in artificial muscles,micro-optomechanical systems,optics,and energyharvesting fields.In this review the recent development of thermo-and photo-driven soft actuators based on the CLCPs are summarized.展开更多
Two kinds of St/DVB copolymer beeds containing (1 - pyrenyl) formyl and(1 -pyrenyl) methyl groups respectively have been synthesized by both functionalization and copolymerization. The fluorescence spectra of the swo...Two kinds of St/DVB copolymer beeds containing (1 - pyrenyl) formyl and(1 -pyrenyl) methyl groups respectively have been synthesized by both functionalization and copolymerization. The fluorescence spectra of the swollen polymers synthesized are similar in shape to those of the corresponding model compounds, whilethe intensity ratio of excimer to monomer shows clear dependence on the contents ofthe pyrene groups.展开更多
Dextran-poly(glycidyl methacrylate) (Dex-PGMA) nano-suitcases were synthesized efficiently via a graft copolymerization induced self-assembly (GISA) approach. On this basis, the Dex-PGMA nano-suitcases were modi...Dextran-poly(glycidyl methacrylate) (Dex-PGMA) nano-suitcases were synthesized efficiently via a graft copolymerization induced self-assembly (GISA) approach. On this basis, the Dex-PGMA nano-suitcases were modified with hydrazide, and the attachment of multiple chelated Gd(III) ions to the interior of the nano-suitcases affords nanoscale MRI contrast agents with high relaxivity values. The highly fenestrated dextran shell of the nano-suitcases assures water exchange which readily occurs between the surrounding environment and the Gd(III) ions encapsulated within the hybrid nano-suitcases. The complexation between the hydrophilic hydrazide interior of the nano-suitcases and Gd(III) ions results in an impressive Gd payload at 22.6 wt% in the hybrid nano-suitcases. The longitudinal relaxivity (rl) of the hybrid nano-suitcases is reported as 44.4 L/(mmol-s), which is 9-14 folds of that of commercial Gd-DTPA agents. In vivo MRI studies demonstrate that the hybrid nano-suitcases accumulated in the lymph node of the rat due to their nanoscale dimensions and displayed strong signals in vivo. The results indicated that the hybrid nano-suitcases provide a promising platform for the diagnosis of lymph node related diseases.展开更多
The Thermomyces lanuginosus lipase(TLLs)was successfully immobilized within a novel hydrogel matrix through a two-step crosslinking method.TLLs were initially crosslinked through the Schiff base reaction by oxidized c...The Thermomyces lanuginosus lipase(TLLs)was successfully immobilized within a novel hydrogel matrix through a two-step crosslinking method.TLLs were initially crosslinked through the Schiff base reaction by oxidized carboxymethyl cellulose(OCMC).The water-soluble OCMC@TLLs complex was subsequently crosslinked by carboxymethyl chitosan(CMCSH)in a microfluidic apparatus to form the CMCHS/OCMC@TLLs microspheres.The CD(Circular Dichroism,CD)and FT-IR(Fourier Transform infrared spectroscopy,FT-IR)spectra demonstrated that the crosslinking of TLLs with OCMC resulted in a less significant impact on their structure compared to that with glutaraldehyde.CMCHS/OCMC@TLLs showed decreased catalytic performance due to the mass transfer resistance,while its thermal stability was greatly improved.The CMCHS/OCMC@TLLs were used to catalyze the lauroylation of arbutin in tetrahydrofuran.After 12 h of reaction under optimal conditions,the yield of 6′-O-lauryl arbutin reached an impres-sive 92.12%.The prepared 6′-O-lauryl arbutin has high lipophilicity and exhibits similar tyrosinase inhibitory activity and higher antioxidant activity compared to its parent compound.展开更多
Two crosslinkable poly(p-phenyleneethynylene)s(PPEs): poly[2,5-di(2'-ethyl-hexyloxy)-1,4-phenylenecthynylene] with end-capped vinyl(PPE1) and poly[2,5-di(allyloxy)-1,4-phenyleneethynylene-2,5-di(2'-ethyl...Two crosslinkable poly(p-phenyleneethynylene)s(PPEs): poly[2,5-di(2'-ethyl-hexyloxy)-1,4-phenylenecthynylene] with end-capped vinyl(PPE1) and poly[2,5-di(allyloxy)-1,4-phenyleneethynylene-2,5-di(2'-ethyl-hexyloxy)-1,4-phenyleneethynylene](PPE2) were synthesized. Via the thermal addition reactions of vinyl end groups of PPE1 and allyloxy side groups of PPE2, crosslinked polymers C-PPE1 and C-PPE2 were obtained, respectively. The two polymers were characterized by wide-angle X-ray diffraction(WXRD), ultraviolet-visible(UV-Vis) absorption, and photoluminescence(PL). The results indicate that in the solid state, the polymer chains of PPE1 were packed with a low degree of crystallinity because of the sterically hindered(2'-ethyl-hexyl)oxy branched side chains, but, because of the introduction of allyloxy side chains, the polymer chains of PPE2 were packed in an order fashion with a high degree of crystallinity. Because of the high crosslinking density in C-PPE2, the formation of aggregates and excimer was hampered by the formed crosslinking network more effectively in C-PPE2 film than in C-PPE1 film.展开更多
Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of ...Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of 55 ℃ in polystyrene-divinylbenzene(P(St-DVB)) were prepared by suspension-like polymerization. The characterization of microcapsules by FTIR, DSC and TG proved that paraffin had been successfully encapsulated and the proportion of encapsulated paraffin was 49.8%—58.5%. The effects of polyvinylpyrrolidone(PVP) with different molecular weights serving as the suspension stabilizer were investigated in detail. The results illustrated that the type of PVP had a significant influence on the particle size of Micro PCMs. The average diameter of Micro PCMs decreased with an increasing molecular weight of PVP. Moreover, the crosslinker-postaddition method was adopted in this study to improve the morphology of P(St-DVB) Micro PCMs. SEM images showed that when the DVB was added at the 2nd hour of polymerization the morphology of obtained P(St-DVB) Micro PCMs exhibited good sphericity since it could avoid the influence of cross-linker agent during the nucleation period.展开更多
Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different conc...Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different concentrations of myoglobin solution by using the molecular imprinting method. Mb adsorption from five different concentrations of Mb solutions was investigated by two types of nanocomposite gel systems prepared by non-imprinted and imprinted methods. Nanocomposite gels imprinted with Mb showed higher adsorption capacity and specificity for Mb than nanocomposite gels prepared by the usual procedure. The highest Mb adsorption was observed via the imprinted nanocomposite gels with 12.5% Mb. In addition, selectivity studies were also performed by using two reference molecules as fibrinogen and hemoglobin. The imprinted nanocomposite gels had higher adsorption capacity for Mb than the non-imprinted gels and also exhibited good selectivity for Mb and high adsorption rate depending on the number of Mb sized cavities.展开更多
To date,more biodegradable polymers have been developed due to the growing recognition of the advantages of biodegradable and biocompatible polymers for biomedical applications.In this study,we introduce the synthesis...To date,more biodegradable polymers have been developed due to the growing recognition of the advantages of biodegradable and biocompatible polymers for biomedical applications.In this study,we introduce the synthesis and characterization of innovative polymers that incorporate biodegradable backbones composed of trimethylol-propane and adipic acid moieties and biocleavable side chains containing pyridyl disulfide groups.Notably,their synthesis is straightforward and catalyst-free under ambient conditions,minimizing potential toxicity and immune responses caused by catalyst residues in polymer materials.The new polymers have desired molecular weight(Mn:18.8 kDa)with a narrow dispersion(PDI:1.32)and offer complete biodegradability,biocompatibility,crosslinking capabilities,and opportunities for covalent chemical modifications.These features make them particularly suitable for use in biomedical materials and devices.Additionally,due to their unique properties,these polymers have been successfully formulated into polymeric gels and nanogels,which are biodegradable as well.Using a near-infrared fluorescent probe as a model cargo,we demonstrated the creation of a biosafe and sustainable nanogel system for agent delivery,with an average size of approximately 70 nm.In these nanogels,agent molecules are covalently attached to the scaffold,thereby avoiding uncontrolled premature release and burst release in the bloodstream and mitigating associated systemic toxicity and side effects.The nanogels can also be easily functionalized with targeting ligands for disease-specific delivery.These polymers induced minimal toxicity toward human cells and displayed excellent in vivo biocompatibility,highlighting the significant potential of their polymeric gels and nanogels for a broad spectrum of biomedical applications.展开更多
Buried interface passivation is crucial for high-efficiency,stable perovskite solar cells(PSCs).Herein,we design a three-layer passivation structure toward the buried interface of inverted PSCs,consisting of NiO_(x),p...Buried interface passivation is crucial for high-efficiency,stable perovskite solar cells(PSCs).Herein,we design a three-layer passivation structure toward the buried interface of inverted PSCs,consisting of NiO_(x),poly(V-p-TPD)and PFN-Br(V-p-TPD,N,N'-di-p-tolyl-N,-N'-bis(4-vinylphenyl)-[1,1'-biphenyl]-4,4'-diamine;PFN-Br,poly[(9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide).Typically,in situ poly(V-p-TPD)layer on the NiO_(x) surface was obtained by a simple thermal crosslinking process.This poly(V-p-TPD)/NiO_(x) bilayer structure is beneficial for hole extraction and high-quality perovskite films with larger grain sizes and less lattice distortion.On this basis,the PFN-Br is further introduced as a surface modification layer,which can not only optimize the energy level alignment with the perovskite but also passivate defects and suppress carrier recombination at the perovskite bottom interface.Finally,inverted PSCs based on(FA_(0.95)Cs_(0.05))PbI_(3) present 25.5%efficiency with a low V_(OC)deficit.Besides,the devices could maintain 91.15%of the initial efficiency after being stored at 85℃for 1080 h,indicating excellent thermal stability.This work highlights the potential of a three-layered passivation structure based on crosslinking polymer HTLs for highly efficient and stable PSCs.展开更多
According to the chemical design, electrorheological properties of supramolecular complex from β-cyclodextrin polymer (β -CDP) were discussed. Six supramolecular complexes of β-cyclodextrin polymer with substituted...According to the chemical design, electrorheological properties of supramolecular complex from β-cyclodextrin polymer (β -CDP) were discussed. Six supramolecular complexes of β-cyclodextrin polymer with substituted salicylic acid and 3-hydroxy-2-naphthoic acid were synthesized by the solid-phase self-assembly method, and their component and structure were characterized by NMR, FT-IR, UV-vis and the fluorescence analysis. Then the electrorheological properties of their suspensions in silicone oil were investigated under DC electric fields. It was found that the yield stresses of these supramolecular complex ER fluids were 7.3–9.8 kPa at 4 kV/mm in DC electric field, which were enhanced by 34%–72% compared with that of pure β-CDP. Among them, that of β-CDP/3-hydroxy-2-naphthoic acid ER fluid was the highest. It was also found that the ER effect of supramolecular complexes can be controlled by changing different vips. When the substituted group is at phenyl ring, ER behavior can be slightly adjusted by the different substituted groups, their number as well as their position at phenyl ring. This can be proved by the measurement of dielectric properties.展开更多
基金supported by Innovation Platform(Base)and Talent Special Project,Jilin Provincial Science&Technology Department,China(No.20230508033RC)。
文摘Heavy metal pollution poses serious risks to the human health and the natural environment,and there is an urgent need to develop efficient heavy metal removal technologies.The adsorption strategy is one of the most famous strategies for the capture of heavy metal ions.In recent years,hyper crosslinked polymers(HCPs),a kind of hyper crosslinked porous material prepared by Friedel-Crafts alkylation reaction,have attracted more and more attention because of their advantages of ultra-light framework,wide range of building monomers,easy modification and functionalization.This review focuses on the advances of HCPs in the efficient applications to the removal of heavy metal ions.The fundamentals are presented including physicochemical properties,adsorption mechanism,and preparation strategies.Subsequently,the application and influencing factors of HCPs toward heavy metal ion adsorption are discussed in detail.Furthermore,the opportunities and challenges of HCPs in this promising research field are summarized and anticipated.We are convinced that the advanced HCP-based materials will make further contributions to heavy metal removal in wastewater treatment,further paving the way of advancing researches in this field.
基金financially supported by the National Natural Science Foundation of China(Nos.52203135 and 52273206)Postdoctoral Fellowship Program of CPSF(No.GZC20230372)+4 种基金Huzhou Science and Technology Program Projects(No.2023GZ18)Zhejiang Postdoctoral Research Project(No.ZJ2023133)Science and Technology Cooperation Fund Program of Chengdu-Chinese Academy of ScienceHunan Provincial Natural Science Foundation(No.2021JJ10029)Huxiang High-level Talent Gathering Project(No.2022RC4039)。
文摘Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.
基金the support of the Swedish Energy Agency and Swedish Foundation for Strategic Research(SSF)for their financial supportthe China Scholarship Council(CSC)for its financial support。
文摘A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p type planar perovskite solar cells(PSCs).P65 is obtained from a low-cost and easily synthesized spiro[fluorene-9,90-xanthene]-30,60-diol(SFX-OH)-based monomer X65 through a freeradical polymerization reaction.The combination of a three-dimensional(3 D)SFX core unit,holetransport methoxydiphenylamine group,and crosslinked polyvinyl network provides P65 with good solubility and excellent film-forming properties.By employing P65 as a dopant-free hole-transport layer in conventional n-i-p type PSCs,a power conversion efficiency(PCE)of up to 17.7%is achieved.To the best of our knowledge,this is the first time a 3 D,crosslinked,polymeric dopant-free HTM has been reported for use in conventional n-i-p type PSCs.This study provides a new strategy for the future development of a 3 D crosslinked polymeric dopant-free HTM with a simple synthetic route and low-cost for commercial,large-scale applications in future PSCs.
基金Project supported by the National Natural Science Foundation of China.
文摘Castor oil polyurethane/poly(methyl methacrylate) AB crosslinked polymers (ABCP) were synthesized by free radical copolymerization of MMA and vinyl-terminated castor oil polyurethane which was obtained from isocyanate-terminated castor oil polyurethane and hydroxyethyl methacrylate The mechanical properties, transition and relaxation, as well as compatibility and morphology of the ABCP were investigated by changing the component. The results show that the ABCP is a semicompatible system and the compatibility of the two components decreases with increasing content of the hard segment. The mechanical and damping properties of the ABCP are obviously superior to that of their homopolymers. The damping value is mainly controlled by cross[ink density of the ABCP but the T-g value by component.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21134003,21273048,51225304,and 51203023)Shanghai Outstanding Academic Leader Program,China(Grant No.15XD1500600)
文摘Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore,they can be utilized to fabricate smart actuators,which have potential applications in artificial muscles,micro-optomechanical systems,optics,and energyharvesting fields.In this review the recent development of thermo-and photo-driven soft actuators based on the CLCPs are summarized.
文摘Two kinds of St/DVB copolymer beeds containing (1 - pyrenyl) formyl and(1 -pyrenyl) methyl groups respectively have been synthesized by both functionalization and copolymerization. The fluorescence spectra of the swollen polymers synthesized are similar in shape to those of the corresponding model compounds, whilethe intensity ratio of excimer to monomer shows clear dependence on the contents ofthe pyrene groups.
基金financially supported by the National Natural Science Foundation of China(Nos.21374061,81371703 and 81501571)the Marie Curie International Incoming Fellowship of the EU+2 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning“Shu Guang”project supported by Shanghai Municipal Education CommissionShanghai Education Development Foundation
文摘Dextran-poly(glycidyl methacrylate) (Dex-PGMA) nano-suitcases were synthesized efficiently via a graft copolymerization induced self-assembly (GISA) approach. On this basis, the Dex-PGMA nano-suitcases were modified with hydrazide, and the attachment of multiple chelated Gd(III) ions to the interior of the nano-suitcases affords nanoscale MRI contrast agents with high relaxivity values. The highly fenestrated dextran shell of the nano-suitcases assures water exchange which readily occurs between the surrounding environment and the Gd(III) ions encapsulated within the hybrid nano-suitcases. The complexation between the hydrophilic hydrazide interior of the nano-suitcases and Gd(III) ions results in an impressive Gd payload at 22.6 wt% in the hybrid nano-suitcases. The longitudinal relaxivity (rl) of the hybrid nano-suitcases is reported as 44.4 L/(mmol-s), which is 9-14 folds of that of commercial Gd-DTPA agents. In vivo MRI studies demonstrate that the hybrid nano-suitcases accumulated in the lymph node of the rat due to their nanoscale dimensions and displayed strong signals in vivo. The results indicated that the hybrid nano-suitcases provide a promising platform for the diagnosis of lymph node related diseases.
基金supported by the Youth Foundation of Southeast University ChengXian College(z0055).
文摘The Thermomyces lanuginosus lipase(TLLs)was successfully immobilized within a novel hydrogel matrix through a two-step crosslinking method.TLLs were initially crosslinked through the Schiff base reaction by oxidized carboxymethyl cellulose(OCMC).The water-soluble OCMC@TLLs complex was subsequently crosslinked by carboxymethyl chitosan(CMCSH)in a microfluidic apparatus to form the CMCHS/OCMC@TLLs microspheres.The CD(Circular Dichroism,CD)and FT-IR(Fourier Transform infrared spectroscopy,FT-IR)spectra demonstrated that the crosslinking of TLLs with OCMC resulted in a less significant impact on their structure compared to that with glutaraldehyde.CMCHS/OCMC@TLLs showed decreased catalytic performance due to the mass transfer resistance,while its thermal stability was greatly improved.The CMCHS/OCMC@TLLs were used to catalyze the lauroylation of arbutin in tetrahydrofuran.After 12 h of reaction under optimal conditions,the yield of 6′-O-lauryl arbutin reached an impres-sive 92.12%.The prepared 6′-O-lauryl arbutin has high lipophilicity and exhibits similar tyrosinase inhibitory activity and higher antioxidant activity compared to its parent compound.
基金Supported by the National Natural Science Foundation of China(Nos.20771030 and 20671025)
文摘Two crosslinkable poly(p-phenyleneethynylene)s(PPEs): poly[2,5-di(2'-ethyl-hexyloxy)-1,4-phenylenecthynylene] with end-capped vinyl(PPE1) and poly[2,5-di(allyloxy)-1,4-phenyleneethynylene-2,5-di(2'-ethyl-hexyloxy)-1,4-phenyleneethynylene](PPE2) were synthesized. Via the thermal addition reactions of vinyl end groups of PPE1 and allyloxy side groups of PPE2, crosslinked polymers C-PPE1 and C-PPE2 were obtained, respectively. The two polymers were characterized by wide-angle X-ray diffraction(WXRD), ultraviolet-visible(UV-Vis) absorption, and photoluminescence(PL). The results indicate that in the solid state, the polymer chains of PPE1 were packed with a low degree of crystallinity because of the sterically hindered(2'-ethyl-hexyl)oxy branched side chains, but, because of the introduction of allyloxy side chains, the polymer chains of PPE2 were packed in an order fashion with a high degree of crystallinity. Because of the high crosslinking density in C-PPE2, the formation of aggregates and excimer was hampered by the formed crosslinking network more effectively in C-PPE2 film than in C-PPE1 film.
基金financially supported by the National Natural Science Foundation of China (No. 20973022 and 11472048)the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)
文摘Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of 55 ℃ in polystyrene-divinylbenzene(P(St-DVB)) were prepared by suspension-like polymerization. The characterization of microcapsules by FTIR, DSC and TG proved that paraffin had been successfully encapsulated and the proportion of encapsulated paraffin was 49.8%—58.5%. The effects of polyvinylpyrrolidone(PVP) with different molecular weights serving as the suspension stabilizer were investigated in detail. The results illustrated that the type of PVP had a significant influence on the particle size of Micro PCMs. The average diameter of Micro PCMs decreased with an increasing molecular weight of PVP. Moreover, the crosslinker-postaddition method was adopted in this study to improve the morphology of P(St-DVB) Micro PCMs. SEM images showed that when the DVB was added at the 2nd hour of polymerization the morphology of obtained P(St-DVB) Micro PCMs exhibited good sphericity since it could avoid the influence of cross-linker agent during the nucleation period.
文摘Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different concentrations of myoglobin solution by using the molecular imprinting method. Mb adsorption from five different concentrations of Mb solutions was investigated by two types of nanocomposite gel systems prepared by non-imprinted and imprinted methods. Nanocomposite gels imprinted with Mb showed higher adsorption capacity and specificity for Mb than nanocomposite gels prepared by the usual procedure. The highest Mb adsorption was observed via the imprinted nanocomposite gels with 12.5% Mb. In addition, selectivity studies were also performed by using two reference molecules as fibrinogen and hemoglobin. The imprinted nanocomposite gels had higher adsorption capacity for Mb than the non-imprinted gels and also exhibited good selectivity for Mb and high adsorption rate depending on the number of Mb sized cavities.
基金support from the National Science Foundation(CHE-2213445 and 2117699)the University of North Dakota(Early Career Scholars Award).
文摘To date,more biodegradable polymers have been developed due to the growing recognition of the advantages of biodegradable and biocompatible polymers for biomedical applications.In this study,we introduce the synthesis and characterization of innovative polymers that incorporate biodegradable backbones composed of trimethylol-propane and adipic acid moieties and biocleavable side chains containing pyridyl disulfide groups.Notably,their synthesis is straightforward and catalyst-free under ambient conditions,minimizing potential toxicity and immune responses caused by catalyst residues in polymer materials.The new polymers have desired molecular weight(Mn:18.8 kDa)with a narrow dispersion(PDI:1.32)and offer complete biodegradability,biocompatibility,crosslinking capabilities,and opportunities for covalent chemical modifications.These features make them particularly suitable for use in biomedical materials and devices.Additionally,due to their unique properties,these polymers have been successfully formulated into polymeric gels and nanogels,which are biodegradable as well.Using a near-infrared fluorescent probe as a model cargo,we demonstrated the creation of a biosafe and sustainable nanogel system for agent delivery,with an average size of approximately 70 nm.In these nanogels,agent molecules are covalently attached to the scaffold,thereby avoiding uncontrolled premature release and burst release in the bloodstream and mitigating associated systemic toxicity and side effects.The nanogels can also be easily functionalized with targeting ligands for disease-specific delivery.These polymers induced minimal toxicity toward human cells and displayed excellent in vivo biocompatibility,highlighting the significant potential of their polymeric gels and nanogels for a broad spectrum of biomedical applications.
基金financial support from the Ministry of Science and Technology of China(2021YFB3800103)Natural Science Foundation of China(U24A6003,52361145847,52172260,52227803,52222212)Chinese Academy of Sciences-Commonwealth Scientific and Industrial Research Organization(CAS-CSIRO)Joint Project(112111KYSB20210017)。
文摘Buried interface passivation is crucial for high-efficiency,stable perovskite solar cells(PSCs).Herein,we design a three-layer passivation structure toward the buried interface of inverted PSCs,consisting of NiO_(x),poly(V-p-TPD)and PFN-Br(V-p-TPD,N,N'-di-p-tolyl-N,-N'-bis(4-vinylphenyl)-[1,1'-biphenyl]-4,4'-diamine;PFN-Br,poly[(9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide).Typically,in situ poly(V-p-TPD)layer on the NiO_(x) surface was obtained by a simple thermal crosslinking process.This poly(V-p-TPD)/NiO_(x) bilayer structure is beneficial for hole extraction and high-quality perovskite films with larger grain sizes and less lattice distortion.On this basis,the PFN-Br is further introduced as a surface modification layer,which can not only optimize the energy level alignment with the perovskite but also passivate defects and suppress carrier recombination at the perovskite bottom interface.Finally,inverted PSCs based on(FA_(0.95)Cs_(0.05))PbI_(3) present 25.5%efficiency with a low V_(OC)deficit.Besides,the devices could maintain 91.15%of the initial efficiency after being stored at 85℃for 1080 h,indicating excellent thermal stability.This work highlights the potential of a three-layered passivation structure based on crosslinking polymer HTLs for highly efficient and stable PSCs.
基金This work was supported by the National Namral Science Foundation of China(Grant No.59832090)the National Natural Science Foundation of China for Distinguished Young Scholar(Grant No.50025207)the'863'Foundation(Grant No.2001AA327130).
文摘According to the chemical design, electrorheological properties of supramolecular complex from β-cyclodextrin polymer (β -CDP) were discussed. Six supramolecular complexes of β-cyclodextrin polymer with substituted salicylic acid and 3-hydroxy-2-naphthoic acid were synthesized by the solid-phase self-assembly method, and their component and structure were characterized by NMR, FT-IR, UV-vis and the fluorescence analysis. Then the electrorheological properties of their suspensions in silicone oil were investigated under DC electric fields. It was found that the yield stresses of these supramolecular complex ER fluids were 7.3–9.8 kPa at 4 kV/mm in DC electric field, which were enhanced by 34%–72% compared with that of pure β-CDP. Among them, that of β-CDP/3-hydroxy-2-naphthoic acid ER fluid was the highest. It was also found that the ER effect of supramolecular complexes can be controlled by changing different vips. When the substituted group is at phenyl ring, ER behavior can be slightly adjusted by the different substituted groups, their number as well as their position at phenyl ring. This can be proved by the measurement of dielectric properties.