Heavy metal pollution poses serious risks to the human health and the natural environment,and there is an urgent need to develop efficient heavy metal removal technologies.The adsorption strategy is one of the most fa...Heavy metal pollution poses serious risks to the human health and the natural environment,and there is an urgent need to develop efficient heavy metal removal technologies.The adsorption strategy is one of the most famous strategies for the capture of heavy metal ions.In recent years,hyper crosslinked polymers(HCPs),a kind of hyper crosslinked porous material prepared by Friedel-Crafts alkylation reaction,have attracted more and more attention because of their advantages of ultra-light framework,wide range of building monomers,easy modification and functionalization.This review focuses on the advances of HCPs in the efficient applications to the removal of heavy metal ions.The fundamentals are presented including physicochemical properties,adsorption mechanism,and preparation strategies.Subsequently,the application and influencing factors of HCPs toward heavy metal ion adsorption are discussed in detail.Furthermore,the opportunities and challenges of HCPs in this promising research field are summarized and anticipated.We are convinced that the advanced HCP-based materials will make further contributions to heavy metal removal in wastewater treatment,further paving the way of advancing researches in this field.展开更多
Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simp...Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.展开更多
Xerostomia(dry mouth)is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren’s syndrome,with no permanent cure existing for this debilitating condition.To this e...Xerostomia(dry mouth)is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren’s syndrome,with no permanent cure existing for this debilitating condition.To this end,in vitro platforms are needed to test therapies directed at salivary(fluid-secreting)cells.However,since these are highly differentiated secretory cells,the maintenance of their differentiated state while expanding in numbers is challenging.In this study,the efficiency of three reversible thermo-ionically crosslinked gels:(1)alginate–gelatin(AG),(2)collagen-containing AG(AGC),and(3)hyaluronic acid-containing AG(AGHA),to recapitulate a native-like environment for human salivary gland(SG)cell expansion and 3D spheroid formation was compared.Although all gels were of mechanical properties comparable to human SG tissue(~11 kPa)and promoted the formation of 3D spheroids,AGHA gels produced larger(>100 cells/spheroid),viable(>93%),proliferative,and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins(aquaporin-5,NKCC1,ZO-1,α-amylase)for 14 days in culture.Moreover,the spheroids responded to agonist-induced stimulation by increasingα-amylase secretory granules.Here,we propose alternative lowcost,reproducible,and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact,highly viable 3D-SG spheroids.展开更多
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ...Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.展开更多
High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally c...High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally challenging.Here,we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend.Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about6.2~8.5 J cm^(-3) up to 110℃,showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers.Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network,which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results.Our findings provide a general and straightforward strategy to attain temperature-stable,high-energy-density polymer-based dielectrics for energy storage capacitors.展开更多
Crosslinking natural rubber (NR) and styrene butadiene rubber (SBR) composites with carbon black (CB) have been utilized in the tire tread industry.A sulfur-based lightly crosslinker can potentially enhance the self-h...Crosslinking natural rubber (NR) and styrene butadiene rubber (SBR) composites with carbon black (CB) have been utilized in the tire tread industry.A sulfur-based lightly crosslinker can potentially enhance the self-healing capabilities of rubber.Moreover,the rubber composites were studied for non-covalent interactions between the benzene rings of SBR and CB.In this research,rubber samples were prepared,and their structure was investigated using Fourier transform infrared (FTIR),and Raman spectroscopy.The red shift in Raman spectroscopy confirmed noncovalent interaction or hydrophobic interaction between SBR and CB in NR/SBR composites exposed to CB due to environmental change.The differential scanning calorimetry (DSC) thermograms showed that NR and SBR were incompatible.Additionally,the mechanical properties of these rubber blends were enhanced as the proportion of NR increased.The maximum self-healing performance reached 40%for the formulation containing 25 phr NR and 75 phr SBR,which also saved energy with low chain end movements.Therefore,these composites could be utilized as a semi-empirical model for studying crosslinked rubber blends,specifically in the rubber tire industry.展开更多
Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use ...Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use of algae hydrogels.In this study,Ba^(2+)/Ca^(2+)co-crosslinked alginate(Ba/CaAlg)hydrogel membrane was prepared by cross-linking sodium alginate with a blend aqueous solution of barium ions and calcium ions,and the membrane was applied to the separation of dyes/salts from dyeing wastewater.Compared with the CaAlg membrane,the Ba/CaAlg hydrogel membrane exhibited more stable structure,and the mechanical properties and salt tolerance of the membrane were significantly improved.The flux of Ba/CaAlg membrane for methyl blue/sodium chloride mixed solution reached 43.5 L m^(−2) h^(−1),which was significantly higher than that of CaAlg membrane.Besides,the Ba/CaAlg membrane showed higher dye rejection(>99.6%)and lower salt rejection(<8.2%).The structure of Ba/CaAlg membrane was preliminarily simulated by molecular dynamics,and the pore size and distribution of the membrane were calculated.The Ba/CaAlg membrane has a broad application prospect in dyes/salts separation.展开更多
As a type of bi-functional device,electrochromic supercapacitors(EC-SCs)have attracted extensive attention in diverse applications such as flexible electronics.However,despite recent encouraging progress,rational desi...As a type of bi-functional device,electrochromic supercapacitors(EC-SCs)have attracted extensive attention in diverse applications such as flexible electronics.However,despite recent encouraging progress,rational design and development of high-performance EC-SC materials with desirable stability remain challenging for practical applications.Here,we propose a fluorination strategy to develop high-performance EC-SC materials with tough hydrogen bonding cross-linked intermolecular polymer network by one-step electrosynthesis of 3-fluorothiophene.The electrosynthesized free-standing poly(3-fluorothiophene)(PFT)films simultaneously achieve high electrochromic performance(optical contrast 42%at 560 nm with reversible color changes between purple and blue),and good capacitance property(290 F·g^(-1),1 A·g^(-1)),as well as outstanding cyclic stability(<2%reduction after 20000 cycles).We further demonstrate the fabrication of PFT-based flexible electrochromic supercapacitor devices(FESDs),and the resultant devices can be used to visually monitor the energy storage state in real-time and maintain outstanding stability under mechanical distortion like bending.Such a tough fluorination hydrogen bonding cross-linking strategy may provide a new design concept for high-performance EC-SC materials and reliable FESDs toward practical applications.展开更多
The morphological change of St/DVB crosslinked gels during chloromethylation wasstudied by fluorescence spectroscopy using St/DVB crosslinked and hypercrosslinked gels as controlsamples. It has been found that with in...The morphological change of St/DVB crosslinked gels during chloromethylation wasstudied by fluorescence spectroscopy using St/DVB crosslinked and hypercrosslinked gels as controlsamples. It has been found that with increase of chlorine content, the excimer emission band (~325nm)approaches to vanish, while the intensity of multi-ring aggregate emission band (~420nm) quicklyreaches a maximum, and then decreases sharply accompanied by appearance ofa new broad bandcentred at ca 488nm which roughly coincides with the typical emission band of hypercrossllinkedSt/DVB gels. Mearwhile, the result of IR measurement suggests that methylene bridge between phenylrings forms and increases with chloromethylation process. These results are explained in terms ofaside reaction of post-crosslinking, which densifies the loosely crosslinked networks and undoes thedensely entangled microgel nuclei. As a result, the morphology of the crosslinked gels becom es morehomogeneous with chloromethylation.展开更多
Xanthated crosslinked chitosan(XCCS) resin prepared under microwave irradiation were used for adsorbing Au(Ⅲ) ions in hydrochloric acid medium.The influence of pH and temperature on the adsorption capacity of XCCS wa...Xanthated crosslinked chitosan(XCCS) resin prepared under microwave irradiation were used for adsorbing Au(Ⅲ) ions in hydrochloric acid medium.The influence of pH and temperature on the adsorption capacity of XCCS was investigated.The original XCCS and the loaded XCCS were characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD),respectively.The results indicate that the XCCS has ability to adsorb Au(Ⅲ) ions and the maximum adsorption capacity of Au(Ⅲ) ions on XCCS is observed at pH 1 and 20℃.The data of batch adsorption tests are fitted to kinetic models and isotherm models,respectively.The kinetics of adsorption process is found to follow pseudo-second-order kinetic rate model,and equilibrium data agree very well with the Langmuir model.Thermodynamic calculation of the Au(Ⅲ) ions adsorption process indicates that the adsorption process is spontaneous and endothermic.展开更多
The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite m...The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite membranes have high application value in industrial wastewater treatment. By varying the membrane fabrication parameters including the weight percent(wt%) of the PMDA, the crosslink temperature and duration, membrane with the best desalination performance was obtained. The composite membrane with a 2-lm-thick PVA selective layer containing 20 wt% of PMDA and being crosslinked at 100 °C for 2 h showed the highest Na Cl rejection of 99.98% with a water flux of 32.26 L/(m^2 h)at 70 °C using the 35,000 ppm Na Cl aqueous solution as feed. FTIR spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis and scanning electron microscope have been used to characterize the structures and properties of both the crosslinked PVA dense films and PVA/PAN composite membranes. The effects of the concentrations of PMDA,the crosslinking time and temperature to the membrane water contact angle, swelling degree, salt rejection and water flux were systematically studied.展开更多
AIM:To study the effect of uncrosslinked and crosslinked hyaluronic acid combined with other artificial tear components in patients with dry eye caused by moderate meibomian gland dysfunction.METHODS:Prospective,singl...AIM:To study the effect of uncrosslinked and crosslinked hyaluronic acid combined with other artificial tear components in patients with dry eye caused by moderate meibomian gland dysfunction.METHODS:Prospective,single-blind,contralateral eye study.Fifty eyes(25 patients)were analyzed.Eye selection for each tear type was random,and the eye drop formulations,0.4%uncrosslinked hyaluronic acid and 0.2%galactoxyloglucan(tear A)and 0.15%crosslinked hyaluronic acid,crocin,and liposomes(tear B)were used.The determined dosing schedule was three times a day for six weeks,and the study participants underwent a clinical examination before and 45 d after lubricant treatment.The Schirmer test,tear breakup time(TBUT)test,and Ocular Surface Disease Index(OSDI)questionnaire were applied before and after instillation period with both types of artificial tears.RESULTS:On the Schirmer test,a significant improvement was obtained with both tear A(P<0.01)and tear B(P<0.01).On the TBUT test,a significant improvement was obtained with tear A(P<0.01)and tear B(P<0.01).The OSDI score significantly decreased after instillation period with both artificial tear types(P<0.01).CONCLUSION:Uncrosslinked hyaluronic acid combined with other components,such as tamarind seed polysaccharide,and crosslinked hyaluronic acid combined with liposomes and crocin are effective for management symptoms of dry eye disease.展开更多
Poor cycling performance caused by the shuttle effect of polysulfides is the main obstacle in the development of advanced lithium-sulfur(Li-S)batteries.Functional polymer binders with polar groups can effectively adso...Poor cycling performance caused by the shuttle effect of polysulfides is the main obstacle in the development of advanced lithium-sulfur(Li-S)batteries.Functional polymer binders with polar groups can effectively adsorb polysulfides chemically,thereby suppressing the shuttle effect.Herein,a robust three-dimensional crosslinked polymer network,which demonstrates excellent mechanical property and strong affinity for polysulfides,is prepared by the aldimine condensation and coordination reactions.The crosslinked chitosan sulfate network(CCSN)significantly enhances the cycling performance and rate capability of the sulfur cathode.The CCSN-based sulfur cathode exhibits a high initial discharge capacity of 824 m Ah g^(-1) with only 0.082%average capacity loss per cycle at 1 C.At a high rate of 4 C,the cathode exhibits a high capacity retention of 84.8%after 300 cycles.Moreover,the CCSN-based sulfur cathode exhibits an excellent cycling performance at a high sulfur loading of 2.5 mg cm^(-2),which indicates the excellent mechanical strength and binding performance of the CCSN binder for high-energy density Li-S batteries.This study demonstrates a viable approach for developing high-performance Li-S batteries for practical application.展开更多
Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene)(poly(CMSt-co-DVB))microsphereswere prepared by distillation-precipitation copolymerization of chloromethylstyrene(CMSt)and divinylbenzene(DVB)inneat...Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene)(poly(CMSt-co-DVB))microsphereswere prepared by distillation-precipitation copolymerization of chloromethylstyrene(CMSt)and divinylbenzene(DVB)inneat acetonitrile.The polymer particles had clean surfaces due to the absence of any added stabilizer.The size of the particlesranges from 2.59 μm to 3.19 μm and with mono-dispersity around 1.002-1.014.The effects of monomer feed incopolymerization on the microsphere formation were described.The polymer microspheres were characterized by SEM andchlorinity elemental analysis.展开更多
Gel polymer electrolytes(GPEs) are considered to be one most promising alternative to liquid electrolytes due to their suitability for creating safe and durable solid-state lithium-metal batteries. However, the mechan...Gel polymer electrolytes(GPEs) are considered to be one most promising alternative to liquid electrolytes due to their suitability for creating safe and durable solid-state lithium-metal batteries. However, the mechanical properties of GPEs usually deteriorate dramatically when polymer matrices are plasticized by a liquid electrolyte, which leads to significant loss of battery performance. Therefore, the long-term structural integrity and good mechanical strength are critical characteristics of GPEs designed for highperformance batteries. Here, an ecologically compatible cellulose-based GPE with a crosslinked structure is synthesized via a facile and effective thiol-ene click chemistry method. The prepared thiol-ene crosslinked GPE possesses enhanced mechanical strength(10.95 MPa) and rigid structure, which enabled us to fabricate Li Fe PO_(4)|Li batteries with ultra-long cycling performance. The capacity retention of the crosslinked cellulose-based GPE can be up to 84% at 0.5 C, even after 350 cycles, which is considerably higher than that of non-crosslinked GPE for which rapid decline in capacity occurs after 200 cycles. In addition, a GPE preparation method described in this work compares favorably well with existing commercial electrolytes for lithium metal batteries.展开更多
The adsorption properties of the Pb(Ⅱ)-Cd(Ⅱ) double-imprinted electrospun crosslinked chitosan nanofibers(Pd/Cd-DIECCNs) prepared by electropspinning and imprinting process for the removal of Pb(Ⅱ) and Cd(Ⅱ) from ...The adsorption properties of the Pb(Ⅱ)-Cd(Ⅱ) double-imprinted electrospun crosslinked chitosan nanofibers(Pd/Cd-DIECCNs) prepared by electropspinning and imprinting process for the removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions were investigated. The prepared nanofibers were characterized by scanning electron microscope(SEM) analysis. Under the optimum experimental conditions, the minimum fiber average diameter was obtained 110 nm. Then the adsorption experiments were carried out to study the effect of different adsorption parameters, such as pH, the ratio between Pb(Ⅱ) and Cd(Ⅱ)in the mixed solutions, contact time, the Pd/Cd-DIECCNs dose and temperature in a batch system. The Extended Langmuir model was applied to describe the equilibrium data of Pb(Ⅱ) and Cd(Ⅱ). The maximum adsorption capacities of the Pd/Cd-DIECCNs arrived at 567 mg/g for Pb(Ⅱ) and 341 mg/g for Cd(Ⅱ), respectively.展开更多
A new method is proposed for the preconcentration of vanadium(Ⅴ) with crosslinked chitosan (CCTS) and determination by graphite furnace atomic absorption spectrometry (GFAAS). The adsorption rate of vanadium(Ⅴ) by C...A new method is proposed for the preconcentration of vanadium(Ⅴ) with crosslinked chitosan (CCTS) and determination by graphite furnace atomic absorption spectrometry (GFAAS). The adsorption rate of vanadium(Ⅴ) by CCTS was 97% at pH 4.0, and vanadium(Ⅴ) was eluted from crosslinked chitosan with 2 mL 2.0 mol·L -1 chlorhydric acid and determined by GFAAS. The detection limit (3σ,n=7) for vanadium(Ⅴ) was 4.8×1 0 -12g and the relative standard deviation (R.S.D) at concentration level of 2.6 μg·L -1 is less than 3.6%. The method shows a good selectivity and high sensitivity, and it was applied to determination of vanadium(Ⅴ) in oyster and water samples. The analytic recoveries are (97±5)%.展开更多
A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p ty...A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p type planar perovskite solar cells(PSCs).P65 is obtained from a low-cost and easily synthesized spiro[fluorene-9,90-xanthene]-30,60-diol(SFX-OH)-based monomer X65 through a freeradical polymerization reaction.The combination of a three-dimensional(3 D)SFX core unit,holetransport methoxydiphenylamine group,and crosslinked polyvinyl network provides P65 with good solubility and excellent film-forming properties.By employing P65 as a dopant-free hole-transport layer in conventional n-i-p type PSCs,a power conversion efficiency(PCE)of up to 17.7%is achieved.To the best of our knowledge,this is the first time a 3 D,crosslinked,polymeric dopant-free HTM has been reported for use in conventional n-i-p type PSCs.This study provides a new strategy for the future development of a 3 D crosslinked polymeric dopant-free HTM with a simple synthetic route and low-cost for commercial,large-scale applications in future PSCs.展开更多
Monodisperse crosslinked polystyrene (CPS) particles were prepared through the normal emulsion polymerization method by adding crosslinker--divinylbenzene (DVB) into the reaction system after polystyrene (PS) pa...Monodisperse crosslinked polystyrene (CPS) particles were prepared through the normal emulsion polymerization method by adding crosslinker--divinylbenzene (DVB) into the reaction system after polystyrene (PS) particles grew to -80% of the final size. When the amount of crosslinker DVB added was less than 6.17 wt% based on styrene, the prepared CPS particles were spherical and uniform and the size of the CPS particles could be predicted through the normal emulsion method. The glass transition temperature (Tg) of the prepared CPS particles was higher than that of un-crosslinked PS particles and, the more crosslinker that was added, the higher the Tg of CPS Particles. The prepared CPS particles had strong resistance to organic solvents.展开更多
Polymeric β-cyclodextrin (β-CD) supported by crosslinked poly(acrylamide-co-vinylamine) was synthesized as anartificial analog of hydrolytic enzyme and its catalysis of the hydrolysis of p-nitrophenyl acetate (p-NPA...Polymeric β-cyclodextrin (β-CD) supported by crosslinked poly(acrylamide-co-vinylamine) was synthesized as anartificial analog of hydrolytic enzyme and its catalysis of the hydrolysis of p-nitrophenyl acetate (p-NPA) was theninvestigated. The result showed that the polymer-supported β-CD could accelerate the hydrolytic reaction of p-NPA morequickly than β-CD itself and crosslinked poly(acrylamide-co-vinylamine) alone. The acceleration rate of the polymer-supported β-CD was about 10 times as fast as that of free β-CD in 0.01 mol/L phosphate buffer (pH 7.4) containing 32%DMSO at 37±0.1℃ when the molar amount of β-CD units in the polymer was equal to that of free β-CD in the experiments.The enhanced acceleration of thc polymer-supported β-CD should be ascribed to the cooperative contribution of theinclusion effect of β-CD ring and the nucleophilic effect of amino groups on the polymeric support.展开更多
基金supported by Innovation Platform(Base)and Talent Special Project,Jilin Provincial Science&Technology Department,China(No.20230508033RC)。
文摘Heavy metal pollution poses serious risks to the human health and the natural environment,and there is an urgent need to develop efficient heavy metal removal technologies.The adsorption strategy is one of the most famous strategies for the capture of heavy metal ions.In recent years,hyper crosslinked polymers(HCPs),a kind of hyper crosslinked porous material prepared by Friedel-Crafts alkylation reaction,have attracted more and more attention because of their advantages of ultra-light framework,wide range of building monomers,easy modification and functionalization.This review focuses on the advances of HCPs in the efficient applications to the removal of heavy metal ions.The fundamentals are presented including physicochemical properties,adsorption mechanism,and preparation strategies.Subsequently,the application and influencing factors of HCPs toward heavy metal ion adsorption are discussed in detail.Furthermore,the opportunities and challenges of HCPs in this promising research field are summarized and anticipated.We are convinced that the advanced HCP-based materials will make further contributions to heavy metal removal in wastewater treatment,further paving the way of advancing researches in this field.
基金financially supported by the National Natural Science Foundation of China(Nos.52203135 and 52273206)Postdoctoral Fellowship Program of CPSF(No.GZC20230372)+4 种基金Huzhou Science and Technology Program Projects(No.2023GZ18)Zhejiang Postdoctoral Research Project(No.ZJ2023133)Science and Technology Cooperation Fund Program of Chengdu-Chinese Academy of ScienceHunan Provincial Natural Science Foundation(No.2021JJ10029)Huxiang High-level Talent Gathering Project(No.2022RC4039)。
文摘Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.
基金support from Fonds de Recherche du Québec Santé(FRQS,grant no.281271)support from FRQS doctoral award #304367funding from CFI,Rheolution Inc.,and Investissement Québec.
文摘Xerostomia(dry mouth)is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren’s syndrome,with no permanent cure existing for this debilitating condition.To this end,in vitro platforms are needed to test therapies directed at salivary(fluid-secreting)cells.However,since these are highly differentiated secretory cells,the maintenance of their differentiated state while expanding in numbers is challenging.In this study,the efficiency of three reversible thermo-ionically crosslinked gels:(1)alginate–gelatin(AG),(2)collagen-containing AG(AGC),and(3)hyaluronic acid-containing AG(AGHA),to recapitulate a native-like environment for human salivary gland(SG)cell expansion and 3D spheroid formation was compared.Although all gels were of mechanical properties comparable to human SG tissue(~11 kPa)and promoted the formation of 3D spheroids,AGHA gels produced larger(>100 cells/spheroid),viable(>93%),proliferative,and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins(aquaporin-5,NKCC1,ZO-1,α-amylase)for 14 days in culture.Moreover,the spheroids responded to agonist-induced stimulation by increasingα-amylase secretory granules.Here,we propose alternative lowcost,reproducible,and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact,highly viable 3D-SG spheroids.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFE0207300)National Natural Science Foundation of China(Grant Nos.22179142 and 22075314)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2024ZB051 and 2023ZB836)the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO).
文摘Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.
基金supported by the National Natural Science Foundation of China(Grant No.52207031)the National Key R&D Program of China(Grant No.2020YFA0710500)。
文摘High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally challenging.Here,we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend.Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about6.2~8.5 J cm^(-3) up to 110℃,showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers.Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network,which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results.Our findings provide a general and straightforward strategy to attain temperature-stable,high-energy-density polymer-based dielectrics for energy storage capacitors.
基金supported by Budget Bureau, The Prime Minister’s Office, Thailand (the strategic program on value creation agriculture for Kasetsart University in the fiscal year 2024)。
文摘Crosslinking natural rubber (NR) and styrene butadiene rubber (SBR) composites with carbon black (CB) have been utilized in the tire tread industry.A sulfur-based lightly crosslinker can potentially enhance the self-healing capabilities of rubber.Moreover,the rubber composites were studied for non-covalent interactions between the benzene rings of SBR and CB.In this research,rubber samples were prepared,and their structure was investigated using Fourier transform infrared (FTIR),and Raman spectroscopy.The red shift in Raman spectroscopy confirmed noncovalent interaction or hydrophobic interaction between SBR and CB in NR/SBR composites exposed to CB due to environmental change.The differential scanning calorimetry (DSC) thermograms showed that NR and SBR were incompatible.Additionally,the mechanical properties of these rubber blends were enhanced as the proportion of NR increased.The maximum self-healing performance reached 40%for the formulation containing 25 phr NR and 75 phr SBR,which also saved energy with low chain end movements.Therefore,these composites could be utilized as a semi-empirical model for studying crosslinked rubber blends,specifically in the rubber tire industry.
基金supported by the National Natural Science Foundation of China(No.22078244)Scientific research and development project of SINOPEC(No.222443)the Science and Technology Plans of Tianjin(No.20JCYBJC00120).
文摘Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use of algae hydrogels.In this study,Ba^(2+)/Ca^(2+)co-crosslinked alginate(Ba/CaAlg)hydrogel membrane was prepared by cross-linking sodium alginate with a blend aqueous solution of barium ions and calcium ions,and the membrane was applied to the separation of dyes/salts from dyeing wastewater.Compared with the CaAlg membrane,the Ba/CaAlg hydrogel membrane exhibited more stable structure,and the mechanical properties and salt tolerance of the membrane were significantly improved.The flux of Ba/CaAlg membrane for methyl blue/sodium chloride mixed solution reached 43.5 L m^(−2) h^(−1),which was significantly higher than that of CaAlg membrane.Besides,the Ba/CaAlg membrane showed higher dye rejection(>99.6%)and lower salt rejection(<8.2%).The structure of Ba/CaAlg membrane was preliminarily simulated by molecular dynamics,and the pore size and distribution of the membrane were calculated.The Ba/CaAlg membrane has a broad application prospect in dyes/salts separation.
基金financially supported by the National Natural Science Foundation of China(Nos.52103214,52364039 and 51973102)Natural Science Foundation of Jiangxi Provincial(Nos.GJJ2201301 and 20232BAB202044)+4 种基金Natural Science Foundation of Shandong Province(Nos.ZR2022MB042 and ZR2019MB067)Innovation Ability Improvement Project ofScience and Technology Small and Medium-Size Enterprise in Shandong Province(No.2022TSGC1121)Qinghai Provincial Basic Research Program(No.2021-ZJ-710)Scientific Fund of Jiangxi Science&Technology Normal University(No.2022QNBJRC004)Talent Fund of QUST(2020)。
文摘As a type of bi-functional device,electrochromic supercapacitors(EC-SCs)have attracted extensive attention in diverse applications such as flexible electronics.However,despite recent encouraging progress,rational design and development of high-performance EC-SC materials with desirable stability remain challenging for practical applications.Here,we propose a fluorination strategy to develop high-performance EC-SC materials with tough hydrogen bonding cross-linked intermolecular polymer network by one-step electrosynthesis of 3-fluorothiophene.The electrosynthesized free-standing poly(3-fluorothiophene)(PFT)films simultaneously achieve high electrochromic performance(optical contrast 42%at 560 nm with reversible color changes between purple and blue),and good capacitance property(290 F·g^(-1),1 A·g^(-1)),as well as outstanding cyclic stability(<2%reduction after 20000 cycles).We further demonstrate the fabrication of PFT-based flexible electrochromic supercapacitor devices(FESDs),and the resultant devices can be used to visually monitor the energy storage state in real-time and maintain outstanding stability under mechanical distortion like bending.Such a tough fluorination hydrogen bonding cross-linking strategy may provide a new design concept for high-performance EC-SC materials and reliable FESDs toward practical applications.
基金National Natural Scientific Foundation of China (Project grant No.29574165 29928003+1 种基金 29874019) National Natural Scientific Foundation of Tianjin (Project grant No.013604011)
文摘The morphological change of St/DVB crosslinked gels during chloromethylation wasstudied by fluorescence spectroscopy using St/DVB crosslinked and hypercrosslinked gels as controlsamples. It has been found that with increase of chlorine content, the excimer emission band (~325nm)approaches to vanish, while the intensity of multi-ring aggregate emission band (~420nm) quicklyreaches a maximum, and then decreases sharply accompanied by appearance ofa new broad bandcentred at ca 488nm which roughly coincides with the typical emission band of hypercrossllinkedSt/DVB gels. Mearwhile, the result of IR measurement suggests that methylene bridge between phenylrings forms and increases with chloromethylation process. These results are explained in terms ofaside reaction of post-crosslinking, which densifies the loosely crosslinked networks and undoes thedensely entangled microgel nuclei. As a result, the morphology of the crosslinked gels becom es morehomogeneous with chloromethylation.
基金financially supported by the National Natural Science Foundation of China(Nos.51004072,51004033,51074047)the National“Twelfth Five-Year”Plan for Science&Technology Support Program of China(No.2012BAE01B02)。
文摘Xanthated crosslinked chitosan(XCCS) resin prepared under microwave irradiation were used for adsorbing Au(Ⅲ) ions in hydrochloric acid medium.The influence of pH and temperature on the adsorption capacity of XCCS was investigated.The original XCCS and the loaded XCCS were characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD),respectively.The results indicate that the XCCS has ability to adsorb Au(Ⅲ) ions and the maximum adsorption capacity of Au(Ⅲ) ions on XCCS is observed at pH 1 and 20℃.The data of batch adsorption tests are fitted to kinetic models and isotherm models,respectively.The kinetics of adsorption process is found to follow pseudo-second-order kinetic rate model,and equilibrium data agree very well with the Langmuir model.Thermodynamic calculation of the Au(Ⅲ) ions adsorption process indicates that the adsorption process is spontaneous and endothermic.
基金supported by the Higher Education and High-quality and World-class Universities (PY201618)the National Natural Science Foundation of China (Contract Grant Number 51373014)the National Natural Science Foundation of China (Contract Grant Number 51403012)
文摘The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite membranes have high application value in industrial wastewater treatment. By varying the membrane fabrication parameters including the weight percent(wt%) of the PMDA, the crosslink temperature and duration, membrane with the best desalination performance was obtained. The composite membrane with a 2-lm-thick PVA selective layer containing 20 wt% of PMDA and being crosslinked at 100 °C for 2 h showed the highest Na Cl rejection of 99.98% with a water flux of 32.26 L/(m^2 h)at 70 °C using the 35,000 ppm Na Cl aqueous solution as feed. FTIR spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis and scanning electron microscope have been used to characterize the structures and properties of both the crosslinked PVA dense films and PVA/PAN composite membranes. The effects of the concentrations of PMDA,the crosslinking time and temperature to the membrane water contact angle, swelling degree, salt rejection and water flux were systematically studied.
文摘AIM:To study the effect of uncrosslinked and crosslinked hyaluronic acid combined with other artificial tear components in patients with dry eye caused by moderate meibomian gland dysfunction.METHODS:Prospective,single-blind,contralateral eye study.Fifty eyes(25 patients)were analyzed.Eye selection for each tear type was random,and the eye drop formulations,0.4%uncrosslinked hyaluronic acid and 0.2%galactoxyloglucan(tear A)and 0.15%crosslinked hyaluronic acid,crocin,and liposomes(tear B)were used.The determined dosing schedule was three times a day for six weeks,and the study participants underwent a clinical examination before and 45 d after lubricant treatment.The Schirmer test,tear breakup time(TBUT)test,and Ocular Surface Disease Index(OSDI)questionnaire were applied before and after instillation period with both types of artificial tears.RESULTS:On the Schirmer test,a significant improvement was obtained with both tear A(P<0.01)and tear B(P<0.01).On the TBUT test,a significant improvement was obtained with tear A(P<0.01)and tear B(P<0.01).The OSDI score significantly decreased after instillation period with both artificial tear types(P<0.01).CONCLUSION:Uncrosslinked hyaluronic acid combined with other components,such as tamarind seed polysaccharide,and crosslinked hyaluronic acid combined with liposomes and crocin are effective for management symptoms of dry eye disease.
基金financially supported by the Science and Technology Program of Guangzhou(202002030307)the Natural Science Foundation of Guangdong Province(2019A1515010595 and 2019A1515111030)+1 种基金the International Cooperative Research Program of Shenzhen(GJHZ20180411143536149)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(2018B030322001)。
文摘Poor cycling performance caused by the shuttle effect of polysulfides is the main obstacle in the development of advanced lithium-sulfur(Li-S)batteries.Functional polymer binders with polar groups can effectively adsorb polysulfides chemically,thereby suppressing the shuttle effect.Herein,a robust three-dimensional crosslinked polymer network,which demonstrates excellent mechanical property and strong affinity for polysulfides,is prepared by the aldimine condensation and coordination reactions.The crosslinked chitosan sulfate network(CCSN)significantly enhances the cycling performance and rate capability of the sulfur cathode.The CCSN-based sulfur cathode exhibits a high initial discharge capacity of 824 m Ah g^(-1) with only 0.082%average capacity loss per cycle at 1 C.At a high rate of 4 C,the cathode exhibits a high capacity retention of 84.8%after 300 cycles.Moreover,the CCSN-based sulfur cathode exhibits an excellent cycling performance at a high sulfur loading of 2.5 mg cm^(-2),which indicates the excellent mechanical strength and binding performance of the CCSN binder for high-energy density Li-S batteries.This study demonstrates a viable approach for developing high-performance Li-S batteries for practical application.
基金This work was funded by the financial support of the National Natural Science Foundation of China(Project No.20274018)Nankai University.
文摘Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene)(poly(CMSt-co-DVB))microsphereswere prepared by distillation-precipitation copolymerization of chloromethylstyrene(CMSt)and divinylbenzene(DVB)inneat acetonitrile.The polymer particles had clean surfaces due to the absence of any added stabilizer.The size of the particlesranges from 2.59 μm to 3.19 μm and with mono-dispersity around 1.002-1.014.The effects of monomer feed incopolymerization on the microsphere formation were described.The polymer microspheres were characterized by SEM andchlorinity elemental analysis.
基金financially supported by National Natural Science Foundation of China (Nos. 21965012, 52003068, 52062012)Research Project of Hainan Province (Nos. ZDYF2021SHFZ263,2019RC038 and ZDYF2020028)+1 种基金Guangdong Province Key Discipline Construction Project (No. 2021ZDJS102)the Innovation Team of Universities of Guangdong Province (No. 2022KCXTD030)。
文摘Gel polymer electrolytes(GPEs) are considered to be one most promising alternative to liquid electrolytes due to their suitability for creating safe and durable solid-state lithium-metal batteries. However, the mechanical properties of GPEs usually deteriorate dramatically when polymer matrices are plasticized by a liquid electrolyte, which leads to significant loss of battery performance. Therefore, the long-term structural integrity and good mechanical strength are critical characteristics of GPEs designed for highperformance batteries. Here, an ecologically compatible cellulose-based GPE with a crosslinked structure is synthesized via a facile and effective thiol-ene click chemistry method. The prepared thiol-ene crosslinked GPE possesses enhanced mechanical strength(10.95 MPa) and rigid structure, which enabled us to fabricate Li Fe PO_(4)|Li batteries with ultra-long cycling performance. The capacity retention of the crosslinked cellulose-based GPE can be up to 84% at 0.5 C, even after 350 cycles, which is considerably higher than that of non-crosslinked GPE for which rapid decline in capacity occurs after 200 cycles. In addition, a GPE preparation method described in this work compares favorably well with existing commercial electrolytes for lithium metal batteries.
基金supported by open project of Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules(No. K2017-8)
文摘The adsorption properties of the Pb(Ⅱ)-Cd(Ⅱ) double-imprinted electrospun crosslinked chitosan nanofibers(Pd/Cd-DIECCNs) prepared by electropspinning and imprinting process for the removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions were investigated. The prepared nanofibers were characterized by scanning electron microscope(SEM) analysis. Under the optimum experimental conditions, the minimum fiber average diameter was obtained 110 nm. Then the adsorption experiments were carried out to study the effect of different adsorption parameters, such as pH, the ratio between Pb(Ⅱ) and Cd(Ⅱ)in the mixed solutions, contact time, the Pd/Cd-DIECCNs dose and temperature in a batch system. The Extended Langmuir model was applied to describe the equilibrium data of Pb(Ⅱ) and Cd(Ⅱ). The maximum adsorption capacities of the Pd/Cd-DIECCNs arrived at 567 mg/g for Pb(Ⅱ) and 341 mg/g for Cd(Ⅱ), respectively.
文摘A new method is proposed for the preconcentration of vanadium(Ⅴ) with crosslinked chitosan (CCTS) and determination by graphite furnace atomic absorption spectrometry (GFAAS). The adsorption rate of vanadium(Ⅴ) by CCTS was 97% at pH 4.0, and vanadium(Ⅴ) was eluted from crosslinked chitosan with 2 mL 2.0 mol·L -1 chlorhydric acid and determined by GFAAS. The detection limit (3σ,n=7) for vanadium(Ⅴ) was 4.8×1 0 -12g and the relative standard deviation (R.S.D) at concentration level of 2.6 μg·L -1 is less than 3.6%. The method shows a good selectivity and high sensitivity, and it was applied to determination of vanadium(Ⅴ) in oyster and water samples. The analytic recoveries are (97±5)%.
基金the support of the Swedish Energy Agency and Swedish Foundation for Strategic Research(SSF)for their financial supportthe China Scholarship Council(CSC)for its financial support。
文摘A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p type planar perovskite solar cells(PSCs).P65 is obtained from a low-cost and easily synthesized spiro[fluorene-9,90-xanthene]-30,60-diol(SFX-OH)-based monomer X65 through a freeradical polymerization reaction.The combination of a three-dimensional(3 D)SFX core unit,holetransport methoxydiphenylamine group,and crosslinked polyvinyl network provides P65 with good solubility and excellent film-forming properties.By employing P65 as a dopant-free hole-transport layer in conventional n-i-p type PSCs,a power conversion efficiency(PCE)of up to 17.7%is achieved.To the best of our knowledge,this is the first time a 3 D,crosslinked,polymeric dopant-free HTM has been reported for use in conventional n-i-p type PSCs.This study provides a new strategy for the future development of a 3 D crosslinked polymeric dopant-free HTM with a simple synthetic route and low-cost for commercial,large-scale applications in future PSCs.
基金National Basic Research Program of China(Grant No:2006CB932601)the Scientific Research Foundation for Returned Overseas Chinese Scholar,Ministry of Education
文摘Monodisperse crosslinked polystyrene (CPS) particles were prepared through the normal emulsion polymerization method by adding crosslinker--divinylbenzene (DVB) into the reaction system after polystyrene (PS) particles grew to -80% of the final size. When the amount of crosslinker DVB added was less than 6.17 wt% based on styrene, the prepared CPS particles were spherical and uniform and the size of the CPS particles could be predicted through the normal emulsion method. The glass transition temperature (Tg) of the prepared CPS particles was higher than that of un-crosslinked PS particles and, the more crosslinker that was added, the higher the Tg of CPS Particles. The prepared CPS particles had strong resistance to organic solvents.
文摘Polymeric β-cyclodextrin (β-CD) supported by crosslinked poly(acrylamide-co-vinylamine) was synthesized as anartificial analog of hydrolytic enzyme and its catalysis of the hydrolysis of p-nitrophenyl acetate (p-NPA) was theninvestigated. The result showed that the polymer-supported β-CD could accelerate the hydrolytic reaction of p-NPA morequickly than β-CD itself and crosslinked poly(acrylamide-co-vinylamine) alone. The acceleration rate of the polymer-supported β-CD was about 10 times as fast as that of free β-CD in 0.01 mol/L phosphate buffer (pH 7.4) containing 32%DMSO at 37±0.1℃ when the molar amount of β-CD units in the polymer was equal to that of free β-CD in the experiments.The enhanced acceleration of thc polymer-supported β-CD should be ascribed to the cooperative contribution of theinclusion effect of β-CD ring and the nucleophilic effect of amino groups on the polymeric support.