Flexoelectricity,an electromechanical coupling between strain gradient and electrical polarization in dielectrics or semiconductors,has attracted significant scientific interest.It is reported that large flexoelectric...Flexoelectricity,an electromechanical coupling between strain gradient and electrical polarization in dielectrics or semiconductors,has attracted significant scientific interest.It is reported that large flexoelectric behaviors can be obtained at the nanoscale because of the size effect.However,the flexoelectric responses of centrosymmetric semiconductors(CSs)are extremely weak under a conventional beam-bending approach,owing to weak flexoelectric coefficients and small strain gradients.The flexoelectric-like effect is an enhanced electromechanical effect coupling the flexoelectricity and piezoelectricity.In this paper,a composite structure consisting of piezoelectric dielectric layers and a CS layer is proposed.The electromechanical response of the CS is significantly enhanced via antisymmetric piezoelectric polarization.Consequently,the cross-scale mechanically tuned carrier distribution in the semiconductor is realized.Meanwhile,the significant size dependence of the electromechanical fields in the semiconductor is demonstrated.The flexoelectronics suppression is found when the semiconductor thickness reaches a critical size(0.8μm).In addition,the first-order carrier density of the composite structure under local loads is illustrated.Our results can suggest the structural design for flexoelectric semiconductor devices.展开更多
Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decode...Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.展开更多
With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.Howev...With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.However,existing connection technologies still face shortcomings in construction efficiency,seismic performance,and cost control.This paper summarizes the process characteristics of commonly used connection technologies such as socket connections,grouted sleeve connections and corrugated pipe connections,and analyzes their seismic capacity and mechanical performance.In response to existing issues,two new technologies—separated steel connection and multi-chamber steel tube concrete connection—are proposed,and their comprehensive performance and economic efficiency are analyzed.The new connection technologies outperform traditional methods in construction efficiency,economic efficiency,and structural stability,with more reasonable force distribution,clearer load transfer paths,and significantly reduced overall costs.Existing technologies,such as socket connections,perform well in seismic performance but are complex to construct;grouted sleeve connections are mature in technology,but the quality of grouting is difficult to inspect.The separated steel connection and multi-chamber steel tube concrete connection technologies offer significant advantages.With the increasing demands for energy conservation and emission reduction,coupled with the rising labor costs,prefabricated bridge piers are undoubtedly poised to become one of the preferred technologies for bridge construction in China in the future.Therefore,in light of the current research landscape,this paper concludes by offering a forward-looking perspective on the development directions of connection methods for prefabricated bridge piers and identifying key areas for future research.展开更多
In tissue engineering(TE),tissue-inducing scaffolds are a promising solution for organ and tissue repair owing to their ability to attract stem cells in vivo,thereby inducing endogenous tissue regeneration through top...In tissue engineering(TE),tissue-inducing scaffolds are a promising solution for organ and tissue repair owing to their ability to attract stem cells in vivo,thereby inducing endogenous tissue regeneration through topological cues.An ideal TE scaffold should possess biomimetic cross-scale structures,similar to that of natural extracellular matrices,at the nano-to macro-scale level.Although freeform fabrication of TE scaffolds can be achieved through 3D printing,this method is limited in simultaneously building multiscale structures.To address this challenge,low-temperature fields were adopted in the traditional fabrication processes,such as casting and 3D printing.Ice crystals grow during scaffold fabrication and act as a template to control the nano-and micro-structures.These microstructures can be optimized by adjusting various parameters,such as the direction and magnitude of the low-temperature field.By preserving the macro-features fabricated using traditional methods,additional micro-structures with smaller scales can be incorporated simultaneously,realizing cross-scale structures that provide a better mimic of natural organs and tissues.In this paper,we present a state-of-the-art review of three low-temperature-field-assisted fabrication methods—freeze casting,cryogenic3D printing,and freeze spinning.Fundamental working principles,fabrication setups,processes,and examples of biomedical applications are introduced.The challenges and outlook for low-temperature-assisted fabrication are also discussed.展开更多
Hydraulic fracturing techniques are commonly used to enhance the production of tight reservoirs.Generally,the effect of hydraulic fracturing can be appraised through hydraulic fracturing experiments in the laboratory,...Hydraulic fracturing techniques are commonly used to enhance the production of tight reservoirs.Generally,the effect of hydraulic fracturing can be appraised through hydraulic fracturing experiments in the laboratory,in which acoustic emission(AE)is often used to monitor the fracturing process.At present,the number of AE events and spatial distribution of AE locations are the two main factors commonly conside red in hydraulic fracturing effectiveness evaluatio n.Howeve r,these commonly used evaluation methods overlook two crucial aspects:the connectivity among fractures and the tensile and shear properties of fractures induced by hydraulic fracturing.In this technical note,we consider the influence of these two previously overlooked aspects on the evaluation of hydraulic fracturing effectiveness by establishing a connected fracture model using AE data.The proposed approach links up AE events based on their spatio-temporal relationship and builds a fracture network called the connection model.Then,the characteristic of the fracture network is represented by the fractal dimension to reveal the complexity of fractures in the network.We extract the tensile-shear properties of each fracture based on the inversion of AE events'focal mechanism.Finally,based on the pre-known fracturing effectiveness of a fracture network,we compare the connection model of AE events in several triaxial hydraulic experiments.Our findings indicate that a comprehensive evaluation of hydraulic fracturing effectiveness can be achieved by considering both the connectivity of AE locations and the tensile-shear properties of AE events.This work aims to provide a more rational method for characterizing rock fracture networks and evaluating rock fracturing effects using AE data.展开更多
This paper focuses on the field of Hakka cuisine vocational education and conducts an in-depth study on the“Secondary Vocational-Higher Vocational-Post-Vocational Training”connection mechanism.By analyzing the neces...This paper focuses on the field of Hakka cuisine vocational education and conducts an in-depth study on the“Secondary Vocational-Higher Vocational-Post-Vocational Training”connection mechanism.By analyzing the necessity from multiple aspects,including the continuity of talent cultivation,the talent structure for industrial development,and the optimal allocation of educational resources,it reveals the significance of constructing this connection mechanism.In terms of the construction ideas,the paper proposes targeted and operable strategies from three key dimensions:the connection and integration of curriculum systems,the collaborative construction of teaching teams,and the sharing and expansion of practical platforms.Meanwhile,to ensure the effective implementation of the mechanism,it elaborates on safeguard measures such as policy support and guidance,the participation of industry associations,and quality monitoring and evaluation.This study holds important theoretical and practical value for improving the Hakka cuisine vocational education system,cultivating high-quality culinary talents that meet the needs of industrial development,and promoting the inheritance and innovation of Hakka cuisine culture.展开更多
Congenital heart disease(CHD)stands as the most common cardiovascular disorder among children,exerting a profound impact on the growth,development,and quality of life of the affected pediatric population.The modified ...Congenital heart disease(CHD)stands as the most common cardiovascular disorder among children,exerting a profound impact on the growth,development,and quality of life of the affected pediatric population.The modified Fontan procedure,the total cavopulmonary connection(TCPC),has become a pivotal palliative or definitive surgical method for treating complex CHD cases,including single ventricle and tricuspid valve atresia.Through staged surgical processes,this technique directly diverts vena cava blood into the pulmonary artery,thus improving the patient’s oxygenation status.Despite the initial success of the Fontan circulation in providing a means for survival in patients with complex CHD,a significant proportion of patients will eventually experience Fontan failure.Fontan failure is a complex syndrome characterized by a constellation of symptoms and signs,including heart failure,arrhythmia,protein-losing enteropathy,and plastic bronchitis.Understanding the contemporary management of failing modified Fontan after TCPC is crucial for optimizing patient outcomes,as the number of adult patients with Fontan circulation continues to grow due to improved surgical techniques and postoperative care.展开更多
Chengdu,a city rich in history and culture,is a beacon of China’s storied past embracing a distinct postmodern vibe.As an important hub along the ancient Silk Road,it has long been a meeting point for di!erent civili...Chengdu,a city rich in history and culture,is a beacon of China’s storied past embracing a distinct postmodern vibe.As an important hub along the ancient Silk Road,it has long been a meeting point for di!erent civilizations,where ideas and cultures have exchanged and thrived.Driven by the vision of a community with a shared future for mankind in recent years,Chengdu scholars and media have opened their arms to the world,engaging in multilingual storytelling.These efforts share the warmth and goodwill of a city consistently ranked one of the happiest in China.Through consistent efforts,new insights have emerged—ideas and aspirations intended to be shared with readers both at home and abroad.展开更多
The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character rese...The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character resemblance,and semantic discrepancies.However,existing methods often struggle to fully address these types of errors,impacting the overall correction accuracy.This paper introduces a multi-modal feature encoder designed to efficiently extract features from three distinct modalities:pinyin,semantics,and character morphology.Unlike previous methods that rely on direct fusion or fixed-weight summation to integrate multi-modal information,our approach employs a multi-head attention mechanism to focuse more on relevant modal information while dis-regarding less pertinent data.To prevent issues such as gradient explosion or vanishing,the model incorporates a residual connection of the original text vector for fine-tuning.This approach ensures robust model performance by maintaining essential linguistic details throughout the correction process.Experimental evaluations on the SIGHAN benchmark dataset demonstrate that the pro-posed model outperforms baseline approaches across various metrics and datasets,confirming its effectiveness and feasibility.展开更多
In petroleum extraction,the sealing surfaces of bolted joints are susceptible to damage due to the high-temperature and high-pressure conditions in wellbores.This damage adversely affects sealing performance,consequen...In petroleum extraction,the sealing surfaces of bolted joints are susceptible to damage due to the high-temperature and high-pressure conditions in wellbores.This damage adversely affects sealing performance,consequently leading to the failure and damage of threaded connections.In severe cases,it can result in considerable economic losses and trigger safety accidents.The sealing performance of special bolted joints holds crucial importance for production efficiency,output,equipment lifespan,and cost control.Enhancing the sealing perfor-mance of threaded connections can have a positive impact on industrial production and environmental protection.The existing research on American Petroleum Institute threaded joints has been thorough and has obtained a series of excellent results.However,the research on the sealing damage mechanism of threaded connections under complex well conditions lacks sufficient depth and that on new sealing technology is scarce.This study proposes a half-size evaluation test to address the abovementioned problem.Based on this test,an investigation into the sealing performance of threaded connections under high-temperature,cyclic loading,and high-temperature creep conditions is conducted.This study uses a combined approach of finite element methods and experiments to investigate the impact of different makeup torques on the sealing performance of premium threaded connections(PTCs).The results of the half-size evaluation test indicate that temperature notably influences the sealing performance of threaded connections.The continuous action of high temperatures causes contact pressure and sealing performance to decrease,and sealing contact pressure increases after cooling.Finite element and test results show that for a certain joint A,the greater the torque,the higher the critical sealing pressure of the thread,and the better the sealing performance.The research on the sealing damage mechanism of PTCs provides a scientific basis and theoretical guidance for the further optimization and development of PTCs.展开更多
As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their join...As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their joints,remains limited,with numerical simulation studies lagging behind theoretical and experimental investigations.This study first establishes an orthotropic elastoplastic constitutive model for timber based on experimental data from Chuandou-style timber structures,determining key parameters such as elastic modulus,shear strength,and plastic strain.Subsequently,a refined finite element model was established using ABAQUS,and its reliability was validated through comparative analysis of stress nephograms,skeleton curves,and other key outcomes with experimental data.The findings provide valuable references for engineering design.展开更多
A prior observational study indicated an asymmetric link between sea surface temperature(SST)in the Tasman Sea and ENSO during austral summer.Specifically,El Niño is associated with a dipolar SST anomaly pattern,...A prior observational study indicated an asymmetric link between sea surface temperature(SST)in the Tasman Sea and ENSO during austral summer.Specifically,El Niño is associated with a dipolar SST anomaly pattern,featuring warming in the northwest and cooling in the southeast,whereas La Niña corresponds to basin-scale warming.This study employs the experiments of coupled models from the sixth phase of the Coupled Model Intercomparison Project(CMIP6)to assess ENSO’s impact on Tasman Sea SST.While all 15 models capture the observed dipolar SST anomalies(SSTAs)in the Tasman Sea during El Niño years,only 7 models capture the basin-scale warmth in the Tasman Sea during La Niña years.Consequently,the models are bifurcated into two groups:group-one models yield one physically reasonable asymmetric connection as observed,including the asymmetry of oceanic heat transport,especially the Ekman meridional transport anomalies induced by zonal wind stress driven by the asymmetric atmospheric circulation over the Tasman Sea.However,due to abnormal responses to ENSO and systematic biases in model simulations,including jet and storm tracks,oceanic heat fluxes,ocean currents,and SST,the group-two models fail to reproduce the asymmetric connection between the Tasman Sea and ENSO.This study not only validates the observational asymmetric connection of SSTAs in the Tasman Sea with respect to the two opposite ENSO phases,but also provides evidence and clues to reduce the bias in group-two models.展开更多
In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimens...In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces.展开更多
This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resi...This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resisting system.Nonlinear earthquake simulations are conducted under design basis earthquake ground motions,and the results are compared against a baseline model with rigid-elastic connections.The study discusses connection design considerations and evaluates the effectiveness of force-limiting connections in mitigating higher-mode effects.The findings show that force-limiting connections significantly reduce the magnitude and variability of floor accelerations,brace forces,and connection forces,while maintaining comparable story drifts.limiting Force-connections primarily reduce the contribution of higher-mode responses,while the controlled rocking base mechanism modifies the first-mode response.Overall,the reduced dispersion in structural response improves the reliability of seismic design and enhances resilience by minimizing damage to both structural components and acceleration-sensitive nonstructural elements.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and ...Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and a profession that now bridges two nations.From a university student in Thailand puzzled by Chinese dialogue to a Thai language lecturer in China influencing the next generation of Thailand-China communicators,Wang’s journey is a story of resilience,romance,and responsibility.展开更多
Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time ...Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field.展开更多
The Arctic plays a pivotal role in the Earth’s climate system,with its rapid transformation exerting profound impacts on global climate dynamics,ecosystems,and human societies.In recent decades,Arctic warming has sig...The Arctic plays a pivotal role in the Earth’s climate system,with its rapid transformation exerting profound impacts on global climate dynamics,ecosystems,and human societies.In recent decades,Arctic warming has significantly outpaced the global mean temperature increase,driving the enhanced sea ice decline,the accelerated mass loss of the Greenland Ice Sheet,permafrost degradation,and glacier retreat.These changes modulate atmospheric and oceanic circulation patterns,establishing teleconnections with mid-and low-latitude climate systems.Investigating the historical evolution,current state,and projected future trends of the Arctic climate system,as well as its global impacts,is crucial for elucidating the mechanisms underlying Arctic amplification,refining climate change projections,attributing extreme weather and climate events,and informing sustainable development strategies.展开更多
In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated fl...In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.展开更多
On November 3,the Philippine Embassy in China and the Philippine Department of Tourism jointly launched the Philippine e-visa system in Beijing,aiming to make travel more convenient for Chinese visitors and promote pe...On November 3,the Philippine Embassy in China and the Philippine Department of Tourism jointly launched the Philippine e-visa system in Beijing,aiming to make travel more convenient for Chinese visitors and promote people-to-people exchange between the two countries.Philippine Ambassador to China Jaime FlorCruz said the government launched the program to ensure a smoother visa experience for Chinese applicants.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB2011400)the National Natural Science Foundation of China(Grant No.52375081).
文摘Flexoelectricity,an electromechanical coupling between strain gradient and electrical polarization in dielectrics or semiconductors,has attracted significant scientific interest.It is reported that large flexoelectric behaviors can be obtained at the nanoscale because of the size effect.However,the flexoelectric responses of centrosymmetric semiconductors(CSs)are extremely weak under a conventional beam-bending approach,owing to weak flexoelectric coefficients and small strain gradients.The flexoelectric-like effect is an enhanced electromechanical effect coupling the flexoelectricity and piezoelectricity.In this paper,a composite structure consisting of piezoelectric dielectric layers and a CS layer is proposed.The electromechanical response of the CS is significantly enhanced via antisymmetric piezoelectric polarization.Consequently,the cross-scale mechanically tuned carrier distribution in the semiconductor is realized.Meanwhile,the significant size dependence of the electromechanical fields in the semiconductor is demonstrated.The flexoelectronics suppression is found when the semiconductor thickness reaches a critical size(0.8μm).In addition,the first-order carrier density of the composite structure under local loads is illustrated.Our results can suggest the structural design for flexoelectric semiconductor devices.
基金support for this work was supported by Key Lab of Intelligent and Green Flexographic Printing under Grant ZBKT202301.
文摘Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.
基金supported by Prevention the Fundamental Research Funds for the Central Universities“Study on the general joint of prefabricated high-pier columns”(ZY20230218)Science and Technology Innovation Program for Postgraduate students in IDP subsidized by Fundamental Research Funds for the Central Universities“Research on seismic performance of prefabricated bridge piers with embedded separated steel connections”(ZY20250316).
文摘With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.However,existing connection technologies still face shortcomings in construction efficiency,seismic performance,and cost control.This paper summarizes the process characteristics of commonly used connection technologies such as socket connections,grouted sleeve connections and corrugated pipe connections,and analyzes their seismic capacity and mechanical performance.In response to existing issues,two new technologies—separated steel connection and multi-chamber steel tube concrete connection—are proposed,and their comprehensive performance and economic efficiency are analyzed.The new connection technologies outperform traditional methods in construction efficiency,economic efficiency,and structural stability,with more reasonable force distribution,clearer load transfer paths,and significantly reduced overall costs.Existing technologies,such as socket connections,perform well in seismic performance but are complex to construct;grouted sleeve connections are mature in technology,but the quality of grouting is difficult to inspect.The separated steel connection and multi-chamber steel tube concrete connection technologies offer significant advantages.With the increasing demands for energy conservation and emission reduction,coupled with the rising labor costs,prefabricated bridge piers are undoubtedly poised to become one of the preferred technologies for bridge construction in China in the future.Therefore,in light of the current research landscape,this paper concludes by offering a forward-looking perspective on the development directions of connection methods for prefabricated bridge piers and identifying key areas for future research.
基金National Natural Science Foundation Council of China(Grant No.52305359)Hubei Provincial Natural Science Foundation of China(Grant No.2023AFB141)National Medical Products Administration Key Laboratory for Dental Materials(PKUSS20240401)。
文摘In tissue engineering(TE),tissue-inducing scaffolds are a promising solution for organ and tissue repair owing to their ability to attract stem cells in vivo,thereby inducing endogenous tissue regeneration through topological cues.An ideal TE scaffold should possess biomimetic cross-scale structures,similar to that of natural extracellular matrices,at the nano-to macro-scale level.Although freeform fabrication of TE scaffolds can be achieved through 3D printing,this method is limited in simultaneously building multiscale structures.To address this challenge,low-temperature fields were adopted in the traditional fabrication processes,such as casting and 3D printing.Ice crystals grow during scaffold fabrication and act as a template to control the nano-and micro-structures.These microstructures can be optimized by adjusting various parameters,such as the direction and magnitude of the low-temperature field.By preserving the macro-features fabricated using traditional methods,additional micro-structures with smaller scales can be incorporated simultaneously,realizing cross-scale structures that provide a better mimic of natural organs and tissues.In this paper,we present a state-of-the-art review of three low-temperature-field-assisted fabrication methods—freeze casting,cryogenic3D printing,and freeze spinning.Fundamental working principles,fabrication setups,processes,and examples of biomedical applications are introduced.The challenges and outlook for low-temperature-assisted fabrication are also discussed.
基金financial support from the subprojects of the Natural Science Foundation of China(No.42302326)the Shenzhen Science and Technology Program(JCYJ20220530113612028)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFC3707905)the Fundamental Research Funds for the Central Universities(JZ2025HGTB0191)。
文摘Hydraulic fracturing techniques are commonly used to enhance the production of tight reservoirs.Generally,the effect of hydraulic fracturing can be appraised through hydraulic fracturing experiments in the laboratory,in which acoustic emission(AE)is often used to monitor the fracturing process.At present,the number of AE events and spatial distribution of AE locations are the two main factors commonly conside red in hydraulic fracturing effectiveness evaluatio n.Howeve r,these commonly used evaluation methods overlook two crucial aspects:the connectivity among fractures and the tensile and shear properties of fractures induced by hydraulic fracturing.In this technical note,we consider the influence of these two previously overlooked aspects on the evaluation of hydraulic fracturing effectiveness by establishing a connected fracture model using AE data.The proposed approach links up AE events based on their spatio-temporal relationship and builds a fracture network called the connection model.Then,the characteristic of the fracture network is represented by the fractal dimension to reveal the complexity of fractures in the network.We extract the tensile-shear properties of each fracture based on the inversion of AE events'focal mechanism.Finally,based on the pre-known fracturing effectiveness of a fracture network,we compare the connection model of AE events in several triaxial hydraulic experiments.Our findings indicate that a comprehensive evaluation of hydraulic fracturing effectiveness can be achieved by considering both the connectivity of AE locations and the tensile-shear properties of AE events.This work aims to provide a more rational method for characterizing rock fracture networks and evaluating rock fracturing effects using AE data.
基金2025 Meizhou Municipal Planning Project for Philosophy and Social Sciences(mzsklx2025101)。
文摘This paper focuses on the field of Hakka cuisine vocational education and conducts an in-depth study on the“Secondary Vocational-Higher Vocational-Post-Vocational Training”connection mechanism.By analyzing the necessity from multiple aspects,including the continuity of talent cultivation,the talent structure for industrial development,and the optimal allocation of educational resources,it reveals the significance of constructing this connection mechanism.In terms of the construction ideas,the paper proposes targeted and operable strategies from three key dimensions:the connection and integration of curriculum systems,the collaborative construction of teaching teams,and the sharing and expansion of practical platforms.Meanwhile,to ensure the effective implementation of the mechanism,it elaborates on safeguard measures such as policy support and guidance,the participation of industry associations,and quality monitoring and evaluation.This study holds important theoretical and practical value for improving the Hakka cuisine vocational education system,cultivating high-quality culinary talents that meet the needs of industrial development,and promoting the inheritance and innovation of Hakka cuisine culture.
文摘Congenital heart disease(CHD)stands as the most common cardiovascular disorder among children,exerting a profound impact on the growth,development,and quality of life of the affected pediatric population.The modified Fontan procedure,the total cavopulmonary connection(TCPC),has become a pivotal palliative or definitive surgical method for treating complex CHD cases,including single ventricle and tricuspid valve atresia.Through staged surgical processes,this technique directly diverts vena cava blood into the pulmonary artery,thus improving the patient’s oxygenation status.Despite the initial success of the Fontan circulation in providing a means for survival in patients with complex CHD,a significant proportion of patients will eventually experience Fontan failure.Fontan failure is a complex syndrome characterized by a constellation of symptoms and signs,including heart failure,arrhythmia,protein-losing enteropathy,and plastic bronchitis.Understanding the contemporary management of failing modified Fontan after TCPC is crucial for optimizing patient outcomes,as the number of adult patients with Fontan circulation continues to grow due to improved surgical techniques and postoperative care.
文摘Chengdu,a city rich in history and culture,is a beacon of China’s storied past embracing a distinct postmodern vibe.As an important hub along the ancient Silk Road,it has long been a meeting point for di!erent civilizations,where ideas and cultures have exchanged and thrived.Driven by the vision of a community with a shared future for mankind in recent years,Chengdu scholars and media have opened their arms to the world,engaging in multilingual storytelling.These efforts share the warmth and goodwill of a city consistently ranked one of the happiest in China.Through consistent efforts,new insights have emerged—ideas and aspirations intended to be shared with readers both at home and abroad.
基金Supported by the National Natural Science Foundation of China(No.61472256,61170277)the Hujiang Foundation(No.A14006).
文摘The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character resemblance,and semantic discrepancies.However,existing methods often struggle to fully address these types of errors,impacting the overall correction accuracy.This paper introduces a multi-modal feature encoder designed to efficiently extract features from three distinct modalities:pinyin,semantics,and character morphology.Unlike previous methods that rely on direct fusion or fixed-weight summation to integrate multi-modal information,our approach employs a multi-head attention mechanism to focuse more on relevant modal information while dis-regarding less pertinent data.To prevent issues such as gradient explosion or vanishing,the model incorporates a residual connection of the original text vector for fine-tuning.This approach ensures robust model performance by maintaining essential linguistic details throughout the correction process.Experimental evaluations on the SIGHAN benchmark dataset demonstrate that the pro-posed model outperforms baseline approaches across various metrics and datasets,confirming its effectiveness and feasibility.
文摘In petroleum extraction,the sealing surfaces of bolted joints are susceptible to damage due to the high-temperature and high-pressure conditions in wellbores.This damage adversely affects sealing performance,consequently leading to the failure and damage of threaded connections.In severe cases,it can result in considerable economic losses and trigger safety accidents.The sealing performance of special bolted joints holds crucial importance for production efficiency,output,equipment lifespan,and cost control.Enhancing the sealing perfor-mance of threaded connections can have a positive impact on industrial production and environmental protection.The existing research on American Petroleum Institute threaded joints has been thorough and has obtained a series of excellent results.However,the research on the sealing damage mechanism of threaded connections under complex well conditions lacks sufficient depth and that on new sealing technology is scarce.This study proposes a half-size evaluation test to address the abovementioned problem.Based on this test,an investigation into the sealing performance of threaded connections under high-temperature,cyclic loading,and high-temperature creep conditions is conducted.This study uses a combined approach of finite element methods and experiments to investigate the impact of different makeup torques on the sealing performance of premium threaded connections(PTCs).The results of the half-size evaluation test indicate that temperature notably influences the sealing performance of threaded connections.The continuous action of high temperatures causes contact pressure and sealing performance to decrease,and sealing contact pressure increases after cooling.Finite element and test results show that for a certain joint A,the greater the torque,the higher the critical sealing pressure of the thread,and the better the sealing performance.The research on the sealing damage mechanism of PTCs provides a scientific basis and theoretical guidance for the further optimization and development of PTCs.
基金Science and Technology Planning Project of Zunyi City of China(Project No.:Zun Shi Ke He HZ Zi[2022]121)College Students’Innovation and Entrepreneurship Training Program(Project No.:202310664031)+1 种基金Guizhou Provincial First-Class Undergraduate Major“Civil Engineering”(Project No.:Qian Jiao Han[2022]No.61)Guizhou Provincial First-Class Course Construction Project(Project No.:2022JKXX0165,2024JKXN0064)。
文摘As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their joints,remains limited,with numerical simulation studies lagging behind theoretical and experimental investigations.This study first establishes an orthotropic elastoplastic constitutive model for timber based on experimental data from Chuandou-style timber structures,determining key parameters such as elastic modulus,shear strength,and plastic strain.Subsequently,a refined finite element model was established using ABAQUS,and its reliability was validated through comparative analysis of stress nephograms,skeleton curves,and other key outcomes with experimental data.The findings provide valuable references for engineering design.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFF0805101)the National Natural Science Founda-tion of China(Grant Nos.42376250 and 42405068).
文摘A prior observational study indicated an asymmetric link between sea surface temperature(SST)in the Tasman Sea and ENSO during austral summer.Specifically,El Niño is associated with a dipolar SST anomaly pattern,featuring warming in the northwest and cooling in the southeast,whereas La Niña corresponds to basin-scale warming.This study employs the experiments of coupled models from the sixth phase of the Coupled Model Intercomparison Project(CMIP6)to assess ENSO’s impact on Tasman Sea SST.While all 15 models capture the observed dipolar SST anomalies(SSTAs)in the Tasman Sea during El Niño years,only 7 models capture the basin-scale warmth in the Tasman Sea during La Niña years.Consequently,the models are bifurcated into two groups:group-one models yield one physically reasonable asymmetric connection as observed,including the asymmetry of oceanic heat transport,especially the Ekman meridional transport anomalies induced by zonal wind stress driven by the asymmetric atmospheric circulation over the Tasman Sea.However,due to abnormal responses to ENSO and systematic biases in model simulations,including jet and storm tracks,oceanic heat fluxes,ocean currents,and SST,the group-two models fail to reproduce the asymmetric connection between the Tasman Sea and ENSO.This study not only validates the observational asymmetric connection of SSTAs in the Tasman Sea with respect to the two opposite ENSO phases,but also provides evidence and clues to reduce the bias in group-two models.
基金Supported by National Natural Science Foundation of China(Grant No.11771070).
文摘In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces.
基金financial support provided by Lehigh University,the Advanced Technology for Large Structural Systems(ATLSS)Engineering Research Center,and the Department of Structural Engineering at the University of California,San Diegolarge research team led by Professor Robert B.Fleischman under the project“NEESR:Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures”with the support of grants from the National Science Foundation,award no.CMMI-1135033in the George E.Brown,Jr.Network for Earthquake gineering En-Simulation Research(NEESR)program and award no.CMMI-0402490 for the George E.Brown,Jr.Network for Earthquake ing Engineer-Simulation(NEES)consortium operations.
文摘This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resisting system.Nonlinear earthquake simulations are conducted under design basis earthquake ground motions,and the results are compared against a baseline model with rigid-elastic connections.The study discusses connection design considerations and evaluates the effectiveness of force-limiting connections in mitigating higher-mode effects.The findings show that force-limiting connections significantly reduce the magnitude and variability of floor accelerations,brace forces,and connection forces,while maintaining comparable story drifts.limiting Force-connections primarily reduce the contribution of higher-mode responses,while the controlled rocking base mechanism modifies the first-mode response.Overall,the reduced dispersion in structural response improves the reliability of seismic design and enhances resilience by minimizing damage to both structural components and acceleration-sensitive nonstructural elements.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
文摘Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and a profession that now bridges two nations.From a university student in Thailand puzzled by Chinese dialogue to a Thai language lecturer in China influencing the next generation of Thailand-China communicators,Wang’s journey is a story of resilience,romance,and responsibility.
基金supported by the Research Program of Wuhan Building Energy Efficiency Office(grant number 202331).
文摘Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field.
文摘The Arctic plays a pivotal role in the Earth’s climate system,with its rapid transformation exerting profound impacts on global climate dynamics,ecosystems,and human societies.In recent decades,Arctic warming has significantly outpaced the global mean temperature increase,driving the enhanced sea ice decline,the accelerated mass loss of the Greenland Ice Sheet,permafrost degradation,and glacier retreat.These changes modulate atmospheric and oceanic circulation patterns,establishing teleconnections with mid-and low-latitude climate systems.Investigating the historical evolution,current state,and projected future trends of the Arctic climate system,as well as its global impacts,is crucial for elucidating the mechanisms underlying Arctic amplification,refining climate change projections,attributing extreme weather and climate events,and informing sustainable development strategies.
基金Project(2022-Major-14)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.
文摘On November 3,the Philippine Embassy in China and the Philippine Department of Tourism jointly launched the Philippine e-visa system in Beijing,aiming to make travel more convenient for Chinese visitors and promote people-to-people exchange between the two countries.Philippine Ambassador to China Jaime FlorCruz said the government launched the program to ensure a smoother visa experience for Chinese applicants.