A controlled cross-linking polymerization containing intra- and intermolecular reactions was designed based on random coil morphology of macromolecules in solution. The soluble intramolecular cross-linked maeromolecu...A controlled cross-linking polymerization containing intra- and intermolecular reactions was designed based on random coil morphology of macromolecules in solution. The soluble intramolecular cross-linked maeromolecule (ICM) was successfully synthesized in the system with PVA and MDI. We found an especial dissolving phenomenon, namely the semi-soluble phenomenon when some gels dissolved in DMF. The chain growth process of ICMs was investigated by Transmission electron microscopy (TEM) pictures of samples at different reacting times, in addition, TEM pictures show ICMs have three kinds of styles in structure, viz. "globule structure", "nubby structure" and the intervenient between the above two structures, and the efflux time of the ICMs was measured by an Ubbelohde viscosimeter, it was found that the efflux time decreases with the degree ofcrosslink increasing.展开更多
Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and ...Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and Cu)of the anode.Herein,we report the synthesis of a stable three-dimensional network structure of the PAA-PEA(polyacrylic acid-polyether amines)polymer binder through intermolecular physicochemical dual cross-linking.By incorporating polar functional groups,the binder molecules not only form strong C-O-Si,N-Si,O=C-O-C,and O=C-O-Cu covalent bonds but also enhance non-covalent interactions with Si,C,and Cu,thereby improving adhesion between the binder and each interface of the anode.Furthermore,weak hydrogen bonds,acting as"sacrificial bonds",dissipate energy and disperse accumulated stress,improving the material flexibility.Due to the high mechanical stability of the framework,which combines both rigidity and flexibility and the coupling effect at the three interfaces,the movement and separation of electrode components are effectively restrained,significantly enhancing the cycling stability of silicon-graphite anodes.The PAA-PEA 2000 electrode exhibits a capacity retention of 78% after 500 cycles at a current density of 0.2 A g^(-1).This work provides insights into the mechanism of binders and guides the design of polymer binders for high-performance Si-based electrodes.展开更多
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin...To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields.展开更多
Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to p...Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to prevent degradation and side reactions.In the contribution,histidine N-thiocarboxyanhydride(His-NTA)is directly synthesized in aqueous solution without protection.With the self-catalysis of the imidazole side group,the ring-closing reaction to form His-NTA does not require any activating reagent(e.g.,phosphorus tribromide),which is elucidated by density functional theory(DFT)calculations.His-NTA directly polymerizes into PHis bearing unprotected imidazole groups with designable molecular weights(4.2-7.7 kg/mol)and low dispersities(1.10-1.19).Kinetic experiments and Monte Carlo simulations reveal the elementary reactions and the relationship between the conversion of His-NTA and time during polymerization.Block copolymerization of His-NTA with sarcosine N-thiocarboxyanhydride(Sar-NTA)demonstrate versatile construction of functional polypept(o)ides.The triblock copoly(amino acid)PHis-b-PSar-b-PHis is capable to reversibly coordinate with transition metal ions(Fe^(2+),Co^(2+),Ni^(2+),Cu^(2+)and Zn^(2+))to form pH-sensitive hydrogels.展开更多
Incorporation of acetal groups in the backbone is a potent strategy to create polymers that are cleavable or degradable under acidic conditions.We report here an in-depth study on the ring-closing-opening copolymeriza...Incorporation of acetal groups in the backbone is a potent strategy to create polymers that are cleavable or degradable under acidic conditions.We report here an in-depth study on the ring-closing-opening copolymerization of o-phthalaldehyde(OPA)and epoxide using Lewis pair type two-component organocatalysts for producing acetal-functionalized polyether and polyurethane.Notably,triethylborane as the Lewis acid,in comparison with tri(n-butyl)borane,more effectively enhances the polymerization activity by mitigating borane-induced reduction of the aldehyde group into extra initiating(borinic ester)species.Density functional theory(DFT)calculations present comparable energy barriers of OPA-epoxide cross-propagation and epoxide self-propagation,which is consistent with the experimental finding that an alternating-rich copolymer comprising mostly OPA-epoxide units but also epoxide-epoxide linkages is produced.In particular,when epoxide is added in a large excess,the product becomes a polyether containing acetal functionalities in the central part of the backbone and thus being convertible into polyurethane with refined acid degradability.展开更多
AIM:To compare simultaneous corneal collagen cross-linking(CXL)with intracorneal ring segment(ICRS)implantation versus successive ICRS followed by CXL and detect the impact of the timing of CXL after ICRS implantation...AIM:To compare simultaneous corneal collagen cross-linking(CXL)with intracorneal ring segment(ICRS)implantation versus successive ICRS followed by CXL and detect the impact of the timing of CXL after ICRS implantation in the successive method.METHODS:This is a retrospective study of the records of three groups of patients.Group 1 of 28 patients were operated on with simultaneous ICRS implantation and CXL,group 2 of 32 patients had ICRS implantation followed by CXL after 1mo,and group 3 of 38 patients had ICRS implantation followed by CXL after 3mo.The three groups had follow-up visits after 6,12,and 24mo.RESULTS:The preoperative data,age,and gender differences among 3 groups revealed no significant differences.The postoperative spherical equivalent and best-corrected visual acuity were improved significantly in all groups compared to the baseline,which were more evident in groups 1 and 2.The differences between preoperative and postoperative mean values of mean of K readings(Km)and maximum K reading(Kmax)at 6mo were 4.66 and 4.1 D in group 1,4.43 and 4.64 D in group 2,but 3.2 and 3.4 D in group 3,respectively.The spherical aberrations and the vertical coma showed significant postoperative changes in all groups,and trefoil showed nonsignificant changes.CONCLUSION:Simultaneous and sequential ICRS implantation and CXL at 1mo has similar Km and Kmax better postoperative changes than when both surgeries were done at three-month intervals.展开更多
As a powerful synthetic tool,ruthenium-catalyzed ring-opening metathesis polymerization(ROMP)has been widely utilized to prepare diverse heteroatom-containing polymers.In this contribution,we report the synthesis of t...As a powerful synthetic tool,ruthenium-catalyzed ring-opening metathesis polymerization(ROMP)has been widely utilized to prepare diverse heteroatom-containing polymers.In this contribution,we report the synthesis of the novel imine-based polymer through the copolymerization of cyclooctene with cyclic imine comonomer via ROMP.Because of the efficient hydrolysis reactions of the imine group,the generated copolymer can be easily degraded under mild condition.Moreover,the generated degradable product was the telechelic polymer bearing amine group,which was highly challenged for its direct synthesis.And this telechelic polymer could also be used for the further synthesis of new polymer through post-transformation.The introduction of imine unit in this work provides a new example of the degradable polymer synthesis.展开更多
Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembl...Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembly and photoinduced seeded reversible addition-fragmentation chain transfer(RAFT)polymerization to prepare a diverse set of core-shell colloidal particles with a well-defined polymer layer.Chemical compositions,structures,and thicknesses of polymer layers could be conveniently regulated by using different types of monomers and feed[monomer]/[chain transfer agent]ratios during seeded RAFT polymerization.展开更多
Although solid-state polymer electrolytes(SPEs)are expected to solve the safety hazards and limited energy density in the energy storage systems,they still encounter an inferior electrode/electrolyte interface when pr...Although solid-state polymer electrolytes(SPEs)are expected to solve the safety hazards and limited energy density in the energy storage systems,they still encounter an inferior electrode/electrolyte interface when prepared in an ex situ manner.Recently,in situ polymerization of SPEs favor high interfacial infiltrability,improved interface contact,and reduced interface resistance,owing to the formation of a"superconformal"interface between electrode and electrolyte.Especially,in situ strategies employing ring-opening polymerization(ROP)are emerging as dazzling stars,further enabling moderate polymerization conditions,controllable molecular structure,and reduced interfacial side reaction.As the main monomers that can be in situ polymerized via the ROP strategy,cyclic ethers have been used to construct the CE-SPEs with many merits,including good battery electrochemical performances and a simple assembly process.Here,as a systematic summarization of the existing reports,this review focuses on the polymerization mechanism of ROP,the design principles of CE-SPEs electrolytes,and the recent application of in situ CE-SPEs.In particular,this review thoroughly discusses the selection of different cyclic monomers,initiators and various modification approaches in in situ fabricating CE-SPEs.Ending with offering future challenges and perspectives,this review envisions shedding light on the profound understanding and scientific guidance for further development of high-performance in situ CE-SPEs.展开更多
AIM:To investigate the response of the anterior and posterior corneal surface in femtosecond laser-assisted convex stromal lenticule addition keratoplasty(SLAK)combined with cross-linking(CXL)for treating keratoconus ...AIM:To investigate the response of the anterior and posterior corneal surface in femtosecond laser-assisted convex stromal lenticule addition keratoplasty(SLAK)combined with cross-linking(CXL)for treating keratoconus at the first 3mo of follow-up.METHODS:In this prospective observational study,20 eyes of 20 keratoconus patients who underwent SLAK combined with CXL were included.The morphological indices in keratometry and elevation data were recorded from the Sirius at baseline and 1 and 3mo postoperatively.The mean values of maximum keratometry(K_(max)),flat keratometry(K_(1)),and steep keratometry(K_(2))at the central,3-mm,5-mm,and 7-mm areas were measured from the curvature map.The changes in anterior and posterior corneal elevation under the best-fit sphere(BFS)radius at seven points horizontally of the center,3-mm,5-mm,and 7-mm area from the center at both nasal(N)and temporal(T)side were measured from elevation map.RESULTS:For the front corneal curvature,K_(1),and K_(2) at 3-mm,5-mm,and 7-mm of the anterior corneal surface increased significantly 1mo postoperatively(all P<0.05)and remained unchanged until 3mo(P>0.05).For the back corneal curvature,K_(1) and K_(2) along the 3-mm back meridian significantly decreased after month 1(P=0.002,0.077,respectively).Posterior K_(2)-readings along the 5-mm and 7-mm did not change after surgery(P>0.05).Anterior BFS decreased 1mo(P<0.001)postoperatively but remained unchanged until 3mo after SLAK(P>0.05).There was no change in posterior BFS before and after the surgery(P>0.05).Anterior elevation at N5,N3,central,and T5 points and posterior elevation at central and T7 points shifted backward 1mo postoperatively(all P<0.05)and remained stable until 3mo(P>0.05).CONCLUSION:The myopic SLAK combined with CXL is an economical alternative for stabilizing the corneal surface in severe keraoconus.“Pseudoprogression”occurs in the early phase postoperatively,but it is not an indicator of keratoconus progression.展开更多
Copolymers of fluoroethylene and vinyl ethers(FEVE)are soluble and curable at relatively low temperature,and are used as high-performance coatings and paints.Currently,most market-available FEVE products obtained thro...Copolymers of fluoroethylene and vinyl ethers(FEVE)are soluble and curable at relatively low temperature,and are used as high-performance coatings and paints.Currently,most market-available FEVE products obtained through solution polymerization contain a large fraction of organic solvent,and hence,volatile organic compound(VOC)emissions cause environmental issues.In this study,the emulsion copolymerization of chlorotrifluoroethylene(CTFE)and vinyl ethers using an environmentally friendly emulsification system to produce waterborne FEVE was investigated.In addition to mixed nonionic and ionic surfactants,macromolecular monomer with double bond and polyoxyethylene segments were used in the emulsification system.The effect of adding macromolecular monomer and polyoxyethylene segment length of the nonionic surfactant on emulsion copolymerization were analyzed.An optimized emulsifier system for FEVE is proposed,and the prepared FEVE latexes exhibit excellent storage stability and film formation ability.展开更多
Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great signif...Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great significance.In this work,trialdehydes,diamines,and trimethylsilyl cyanide could easily undergo multicomponent polymerization under mild conditions,producing hyperbranched poly(α-aminonitrile)s with high molecular weights(M_(w) up to 4.87×10^(4))in good yields(up to 85%).The hyperbranched poly(α-aminonitrile)s have good solubility in commonly used organic solvents,high thermal stability as well as morphological stability.Furthermore,due to the numerous aldehyde groups in their branched chains,these hb-poly(α-aminonitrile)s can undergo one-pot,two-step,four-component post-polymerization with high efficiency.This work not only confirms the efficiency of our established catalyst-free multicomponent polymerization of aldehydes,amines and trimethylsilyl cyanide,but also provides a versatile and powerful platform for the preparation of functional hyperbranched polymeric materials.展开更多
Solid polymer electrolytes(SPEs)have garnered considerable interest in the field of lithium metal batteries(LMBs)owing to their exceptional mechanical strength,excellent designability,and heightened safety characteris...Solid polymer electrolytes(SPEs)have garnered considerable interest in the field of lithium metal batteries(LMBs)owing to their exceptional mechanical strength,excellent designability,and heightened safety characteristics.However,their inherently low ion transport efficiency poses a major challenge for their application in LMBs.To address this issue,covalent organic framework(COF)with their ordered ion transport channels,chemical stability,large specific surface area,and designable multifunctional sites has shown promising potential to enhance lithium-ion conduction.Here,we prepared an anionic COF,Tp Pa-COOLi,which can catalyze the ring-opening copolymerization of cyclic lactone monomers for the in situ fabrication of SPEs.The design leverages the high specific surface area of COF to facilitate the absorption of polymerization precursor and catalyze the polymerization within the pores,forming additional COF-polymer junctions that enhance ion transport pathways.The partial exfoliation of COF achieved through these junctions improved its dispersion within the polymer matrix,preserving ion transport channels and facilitating ion transport across COF grain boundaries.By controlling variables to alter the crystallinity of Tp Pa-COOLi and the presence of-COOLi substituents,Tp Pa-COOLi with partial long-range order and-COOLi substituents exhibited superior electrochemical performance.This research demonstrates the potential in constructing high-performance SPEs for LMBs.展开更多
Chain-growth radical polymerization of vinyl monomers is essential for producing a wide range of materials with properties tailored to specific applications.However,the inherent resistance of the polymer's C―C ba...Chain-growth radical polymerization of vinyl monomers is essential for producing a wide range of materials with properties tailored to specific applications.However,the inherent resistance of the polymer's C―C backbone to degradation raises significant concerns regarding long-term environmental persistence,which also limits their potential in biomedical applications.To address these challenges,researchers have developed strategies to either degrade preexisting vinyl polymers or incorporate cleavable units into the backbone to modify them with enhanced degradability.This review explores the various approaches aimed at achieving backbone degradability in chain-growth radical polymerization of vinyl monomers,while also highlighting future research directions for the development of application-driven degradable vinyl polymers.展开更多
The preparation of polypeptide materials in continuous flow reactors shows great potential with improved reproducibility and scalability.However,conventional polypeptide synthesis from the polymerization of N-carboxya...The preparation of polypeptide materials in continuous flow reactors shows great potential with improved reproducibility and scalability.However,conventional polypeptide synthesis from the polymerization of N-carboxyanhydride(NCA)is conducted at relatively slow rates,requiring long tubing or ending up with low-molecular-weight polymers.Inspired by recent advances in accelerated NCA polymerization,we report the crown-ether-catalyzed,rapid synthesis of polypeptide materials in cosolvents in flow reactors.The incorporation of low-polarity dichloromethane and the use of catalysts enabled fast conversion of monomers in 30 min,yielding well-defined polypeptides(up to 30 k Da)through a 20-cm tubing reactor.Additionally,random or block copolypeptides were efficiently prepared by incorporating a second NCA monomer.We believe that this work highlights the accelerated polymerization design in flow polymerization processes,offering the continuous production of polypeptide materials.展开更多
Aging is a persistent topic of interest,with skin aging as its most visible manifestation,characterized by a reduction in intact collagen and elastic fibers in the dermis.Hyaluronic acid,a vital component of the extra...Aging is a persistent topic of interest,with skin aging as its most visible manifestation,characterized by a reduction in intact collagen and elastic fibers in the dermis.Hyaluronic acid,a vital component of the extracellular matrix present in the skin,has become a mainstream method for skin rejuvenation through injections.However,the rapid degradation of pure hyaluronic acid,combined with insufficient maintenance duration and often limited therapeutic effects,presents significant challenges for injectable treatments.Additionally,low patient compliance due to discomfort from needles penetrating the dermal layer further complicates its use.In this review,we summarize and compare existing interventions for skin aging,focusing on strategies to prolong the degradation cycle of hyaluronic acid,including variations in cross-linking modalities and injection techniques.We conclude that the injection of cross-linked modified hyaluronic acid via microneedles represents a promising approach to extend the degradation cycle,offering valuable insights for current therapeutic strategies.展开更多
In recent years,cellulose-based fluorescent polymers have received considerable attention.However,conventional modification methods face challenges such as insolubility in most solvents,fluorescence instability,and en...In recent years,cellulose-based fluorescent polymers have received considerable attention.However,conventional modification methods face challenges such as insolubility in most solvents,fluorescence instability,and environmental risks.In this study,a novel biosynthesis strategy was developed to fabricate fluorescent cellulose by adding fluorescent glucose derivatives to a bacterial fermentation broth.The metabolic activity of bacteria is utilized to achieve in situ polymerization of glucose and its derivatives during the synthesis of bacterial cellulose.Owing to the structural similarity between triphenylamine-modified glucose(TPA-Glc N)and glucose monomers,the TPA-Glc N were efficiently assimilated by the bacterial cells and incorporated into the cellulose matrix,resulting in a uniform distribution of fluorescence.The fluorescence color and intensity of the obtained cellulose could be adjusted by varying the amount of the fluorescent glucose derivatives.Compared to the fluorescent cellulose synthesized through physical dyeing,the fluorescence of the products obtained by in situ polymerization showed higher intensity and stability.Furthermore,fluorescent bacterial cellulose can be hydrolyzed into nanocellulose-based ink,which demonstrates exceptional anti-counterfeiting capabilities under UV light.This biosynthesis method not only overcomes the limitations of traditional modification techniques but also highlights the potential of microbial systems as platforms for synthesizing functional polymers.展开更多
Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate...Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate for in situ construction of conjugated poly(triarylpyridine)s was developed.The polymerization reactions of diacetylarenes,aromatic dialkynones and NH_(4)OAc were performed in dimethylsulfoxide(DMSO)under heating in the presence of potassium tert-butoxide(t-BuOK),affording four conjugated poly(2,4,6-triarylpyridine)s(PTAPs)in satisfactory yields.The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5%weight loss temperatures reaching up to 460℃.They are also electrochemically active.The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features.Moreover,through simply being doped into poly(vinyl alcohol)(PVA)matrix,the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%.This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.展开更多
Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding pro...Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding proton trap 2,6-di-tert-butylpyridine(DTBP),and the controlled initiation of DCC was confirmed by ^(1)H nuclear magnetic resonance(^(1)H-NMR)spectroscopy and matrix-assisted laser desorption ionization time-offlight mass(MALDI-TOF-MS)spectrometry.The polymerization kinetics were analyzed to for optimizing the polymerization rate.Allyl-telechelic PSTOs(allyl-PSTO-allyl)with molecular weight(Mn)range of 3540–7800 g/mol and narrow molecular weight dispersity(Mw/Mn)about 1.25 were prepared through nucleophilic substitution with allyltrimethylsilane(ATMS)at approximately 40%monomer conversion.The experimental results indicate that the substitution efficiency of ATMS increased with higher ATMS concentration,temperature,and extended reaction time.Nearly unity ally-functionality for allyl-PSTO-allyl was achieved by adding sufficient SnCl_(4) prior to the substitution.展开更多
In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a ...In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a heterogeneous structure using pre-vulcanized powder rubber to replace traditional fillers.The matrix material is composed of a blend of NR and BR,which is widely used in tire manufacturing.By incorporating pre-vulcanized trans-1,4-poly(isoprene-co-butadiene)(TBIR)rubber powder(pVTPR)with different cross-linking densities and contents,significant improvements in the gas barrier properties and CO_(2)permselectivity of the NR/BR/pVTPR composites were observed.The results indicated that compared to NR/BR/TBIR composites prepared through direct blending of NR,BR,and TBIR,the NR/BR/pVTPR composites exhibited markedly superior gas barrier properties.Increasing the cross-linking density of pVTPR resulted in progressive enhancement of the gas barrier properties of the NR/BR/pVTPR composite.For example,the addition of 20 phr pVTPR with a cross-linking density of 346 mol/m^(3)resulted in a 79%improvement in the oxygen barrier property of NR/BR/pVTPR compared to NR/BR,achieving a value of 5.47×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1).Similarly,the nitrogen barrier property improved by 76%compared to NR/BR,reaching 2.4×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1),which is 28%higher than the conventional inner liner material brominated butyl rubber(BIIR,PN2=3.32×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1)).Owing to its low cost,exceptional gas barrier properties,superior adhesion to various tire components,and co-vulcanization capabilities,the NR/BR/pVTPR composite has emerged as a promising alternative to butyl rubber in the inner liner of tires.Furthermore,by fine-tuning the cross-linking density of pVTPR,the high-gas-barrier NR/BR/pVTPR composites also demonstrated remarkable CO_(2)permselectivity,with a CO_(2)/N2 selectivity of 61.4 and a CO_(2)/O_(2)selectivity of 26.12.This innovation provides a novel strategy for CO_(2)capture and separation,with potential applications in future environmental and industrial processes.The multifunctional NR/BR/pVTPR composite,with its superior gas barrier properties and CO_(2)permselectivity,is expected to contribute to the development of safer,greener,and more cost-effective transportation solutions.展开更多
文摘A controlled cross-linking polymerization containing intra- and intermolecular reactions was designed based on random coil morphology of macromolecules in solution. The soluble intramolecular cross-linked maeromolecule (ICM) was successfully synthesized in the system with PVA and MDI. We found an especial dissolving phenomenon, namely the semi-soluble phenomenon when some gels dissolved in DMF. The chain growth process of ICMs was investigated by Transmission electron microscopy (TEM) pictures of samples at different reacting times, in addition, TEM pictures show ICMs have three kinds of styles in structure, viz. "globule structure", "nubby structure" and the intervenient between the above two structures, and the efflux time of the ICMs was measured by an Ubbelohde viscosimeter, it was found that the efflux time decreases with the degree ofcrosslink increasing.
基金financial support from the National Natural Science Foundation of China[grant number 21878299]。
文摘Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and Cu)of the anode.Herein,we report the synthesis of a stable three-dimensional network structure of the PAA-PEA(polyacrylic acid-polyether amines)polymer binder through intermolecular physicochemical dual cross-linking.By incorporating polar functional groups,the binder molecules not only form strong C-O-Si,N-Si,O=C-O-C,and O=C-O-Cu covalent bonds but also enhance non-covalent interactions with Si,C,and Cu,thereby improving adhesion between the binder and each interface of the anode.Furthermore,weak hydrogen bonds,acting as"sacrificial bonds",dissipate energy and disperse accumulated stress,improving the material flexibility.Due to the high mechanical stability of the framework,which combines both rigidity and flexibility and the coupling effect at the three interfaces,the movement and separation of electrode components are effectively restrained,significantly enhancing the cycling stability of silicon-graphite anodes.The PAA-PEA 2000 electrode exhibits a capacity retention of 78% after 500 cycles at a current density of 0.2 A g^(-1).This work provides insights into the mechanism of binders and guides the design of polymer binders for high-performance Si-based electrodes.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.22035001 and No.52233005.
文摘To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields.
基金financially supported by the National Natural Science Foundation of China(Nos.22271252 and 22201105)。
文摘Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to prevent degradation and side reactions.In the contribution,histidine N-thiocarboxyanhydride(His-NTA)is directly synthesized in aqueous solution without protection.With the self-catalysis of the imidazole side group,the ring-closing reaction to form His-NTA does not require any activating reagent(e.g.,phosphorus tribromide),which is elucidated by density functional theory(DFT)calculations.His-NTA directly polymerizes into PHis bearing unprotected imidazole groups with designable molecular weights(4.2-7.7 kg/mol)and low dispersities(1.10-1.19).Kinetic experiments and Monte Carlo simulations reveal the elementary reactions and the relationship between the conversion of His-NTA and time during polymerization.Block copolymerization of His-NTA with sarcosine N-thiocarboxyanhydride(Sar-NTA)demonstrate versatile construction of functional polypept(o)ides.The triblock copoly(amino acid)PHis-b-PSar-b-PHis is capable to reversibly coordinate with transition metal ions(Fe^(2+),Co^(2+),Ni^(2+),Cu^(2+)and Zn^(2+))to form pH-sensitive hydrogels.
基金financially supported by the National Key R&D Program of China(No.2022YFC2805103)the National Natural Science Foundation of China(Nos.52022031 and 52263001)the Foundation from Qinghai Science and Technology Department(No.2022-ZJ-944Q)。
文摘Incorporation of acetal groups in the backbone is a potent strategy to create polymers that are cleavable or degradable under acidic conditions.We report here an in-depth study on the ring-closing-opening copolymerization of o-phthalaldehyde(OPA)and epoxide using Lewis pair type two-component organocatalysts for producing acetal-functionalized polyether and polyurethane.Notably,triethylborane as the Lewis acid,in comparison with tri(n-butyl)borane,more effectively enhances the polymerization activity by mitigating borane-induced reduction of the aldehyde group into extra initiating(borinic ester)species.Density functional theory(DFT)calculations present comparable energy barriers of OPA-epoxide cross-propagation and epoxide self-propagation,which is consistent with the experimental finding that an alternating-rich copolymer comprising mostly OPA-epoxide units but also epoxide-epoxide linkages is produced.In particular,when epoxide is added in a large excess,the product becomes a polyether containing acetal functionalities in the central part of the backbone and thus being convertible into polyurethane with refined acid degradability.
文摘AIM:To compare simultaneous corneal collagen cross-linking(CXL)with intracorneal ring segment(ICRS)implantation versus successive ICRS followed by CXL and detect the impact of the timing of CXL after ICRS implantation in the successive method.METHODS:This is a retrospective study of the records of three groups of patients.Group 1 of 28 patients were operated on with simultaneous ICRS implantation and CXL,group 2 of 32 patients had ICRS implantation followed by CXL after 1mo,and group 3 of 38 patients had ICRS implantation followed by CXL after 3mo.The three groups had follow-up visits after 6,12,and 24mo.RESULTS:The preoperative data,age,and gender differences among 3 groups revealed no significant differences.The postoperative spherical equivalent and best-corrected visual acuity were improved significantly in all groups compared to the baseline,which were more evident in groups 1 and 2.The differences between preoperative and postoperative mean values of mean of K readings(Km)and maximum K reading(Kmax)at 6mo were 4.66 and 4.1 D in group 1,4.43 and 4.64 D in group 2,but 3.2 and 3.4 D in group 3,respectively.The spherical aberrations and the vertical coma showed significant postoperative changes in all groups,and trefoil showed nonsignificant changes.CONCLUSION:Simultaneous and sequential ICRS implantation and CXL at 1mo has similar Km and Kmax better postoperative changes than when both surgeries were done at three-month intervals.
基金financially supported by National Key R&D Program of China(No.2021YFA1501700)CAS Project for Young Scientists in Basic Research(No.YSBR-094)+1 种基金Natural Science Foundation of Anhui Province(Nos.2308085Y35 and 2023AH030002)Hefei Natural Science Foundation(No.202304)。
文摘As a powerful synthetic tool,ruthenium-catalyzed ring-opening metathesis polymerization(ROMP)has been widely utilized to prepare diverse heteroatom-containing polymers.In this contribution,we report the synthesis of the novel imine-based polymer through the copolymerization of cyclooctene with cyclic imine comonomer via ROMP.Because of the efficient hydrolysis reactions of the imine group,the generated copolymer can be easily degraded under mild condition.Moreover,the generated degradable product was the telechelic polymer bearing amine group,which was highly challenged for its direct synthesis.And this telechelic polymer could also be used for the further synthesis of new polymer through post-transformation.The introduction of imine unit in this work provides a new example of the degradable polymer synthesis.
基金support from the Science and Technology Program of Guangzhou(No.2024A04J2821)the National Natural Science Foundation of China(Nos.52222301,22171055)the Guangdong Natural Science Foundation for Distinguished Young Scholar(No.2022B1515020078)。
文摘Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembly and photoinduced seeded reversible addition-fragmentation chain transfer(RAFT)polymerization to prepare a diverse set of core-shell colloidal particles with a well-defined polymer layer.Chemical compositions,structures,and thicknesses of polymer layers could be conveniently regulated by using different types of monomers and feed[monomer]/[chain transfer agent]ratios during seeded RAFT polymerization.
基金supported by the National Natural Science Foundation of China(22022813)the Zhejiang Provincial Natural Science Foundation of China(LQ24B030002)the China Postdoctoral Science Foundation(2022M722729,2023T160571).
文摘Although solid-state polymer electrolytes(SPEs)are expected to solve the safety hazards and limited energy density in the energy storage systems,they still encounter an inferior electrode/electrolyte interface when prepared in an ex situ manner.Recently,in situ polymerization of SPEs favor high interfacial infiltrability,improved interface contact,and reduced interface resistance,owing to the formation of a"superconformal"interface between electrode and electrolyte.Especially,in situ strategies employing ring-opening polymerization(ROP)are emerging as dazzling stars,further enabling moderate polymerization conditions,controllable molecular structure,and reduced interfacial side reaction.As the main monomers that can be in situ polymerized via the ROP strategy,cyclic ethers have been used to construct the CE-SPEs with many merits,including good battery electrochemical performances and a simple assembly process.Here,as a systematic summarization of the existing reports,this review focuses on the polymerization mechanism of ROP,the design principles of CE-SPEs electrolytes,and the recent application of in situ CE-SPEs.In particular,this review thoroughly discusses the selection of different cyclic monomers,initiators and various modification approaches in in situ fabricating CE-SPEs.Ending with offering future challenges and perspectives,this review envisions shedding light on the profound understanding and scientific guidance for further development of high-performance in situ CE-SPEs.
基金Supported by the Social Development Grant of Shaanxi Province(No.2022SF-404)the Science and Technology Program of Xi’an,China(No.23YXYJ0010,No.23YXYJ0037)+1 种基金the Research Project of Xi’an Health Commission(No.2024ms05)the Technology Innovation Supporting Program of Shaanxi(No.2024RS-CXTD-11).
文摘AIM:To investigate the response of the anterior and posterior corneal surface in femtosecond laser-assisted convex stromal lenticule addition keratoplasty(SLAK)combined with cross-linking(CXL)for treating keratoconus at the first 3mo of follow-up.METHODS:In this prospective observational study,20 eyes of 20 keratoconus patients who underwent SLAK combined with CXL were included.The morphological indices in keratometry and elevation data were recorded from the Sirius at baseline and 1 and 3mo postoperatively.The mean values of maximum keratometry(K_(max)),flat keratometry(K_(1)),and steep keratometry(K_(2))at the central,3-mm,5-mm,and 7-mm areas were measured from the curvature map.The changes in anterior and posterior corneal elevation under the best-fit sphere(BFS)radius at seven points horizontally of the center,3-mm,5-mm,and 7-mm area from the center at both nasal(N)and temporal(T)side were measured from elevation map.RESULTS:For the front corneal curvature,K_(1),and K_(2) at 3-mm,5-mm,and 7-mm of the anterior corneal surface increased significantly 1mo postoperatively(all P<0.05)and remained unchanged until 3mo(P>0.05).For the back corneal curvature,K_(1) and K_(2) along the 3-mm back meridian significantly decreased after month 1(P=0.002,0.077,respectively).Posterior K_(2)-readings along the 5-mm and 7-mm did not change after surgery(P>0.05).Anterior BFS decreased 1mo(P<0.001)postoperatively but remained unchanged until 3mo after SLAK(P>0.05).There was no change in posterior BFS before and after the surgery(P>0.05).Anterior elevation at N5,N3,central,and T5 points and posterior elevation at central and T7 points shifted backward 1mo postoperatively(all P<0.05)and remained stable until 3mo(P>0.05).CONCLUSION:The myopic SLAK combined with CXL is an economical alternative for stabilizing the corneal surface in severe keraoconus.“Pseudoprogression”occurs in the early phase postoperatively,but it is not an indicator of keratoconus progression.
基金financially supported by the joint lab of Shanghai Huayi 3F New Materials Co.,Ltd.Donghua University。
文摘Copolymers of fluoroethylene and vinyl ethers(FEVE)are soluble and curable at relatively low temperature,and are used as high-performance coatings and paints.Currently,most market-available FEVE products obtained through solution polymerization contain a large fraction of organic solvent,and hence,volatile organic compound(VOC)emissions cause environmental issues.In this study,the emulsion copolymerization of chlorotrifluoroethylene(CTFE)and vinyl ethers using an environmentally friendly emulsification system to produce waterborne FEVE was investigated.In addition to mixed nonionic and ionic surfactants,macromolecular monomer with double bond and polyoxyethylene segments were used in the emulsification system.The effect of adding macromolecular monomer and polyoxyethylene segment length of the nonionic surfactant on emulsion copolymerization were analyzed.An optimized emulsifier system for FEVE is proposed,and the prepared FEVE latexes exhibit excellent storage stability and film formation ability.
基金financially supported by the Scientific Research Start-up Fund Project of Anhui Polytechnic University for Introducing Talents(No.2022YQQ081)Natural Science Research Project of Anhui Educational Committee(No.2024AH050133)the National Natural Science Foundation of China(No.22001078).
文摘Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great significance.In this work,trialdehydes,diamines,and trimethylsilyl cyanide could easily undergo multicomponent polymerization under mild conditions,producing hyperbranched poly(α-aminonitrile)s with high molecular weights(M_(w) up to 4.87×10^(4))in good yields(up to 85%).The hyperbranched poly(α-aminonitrile)s have good solubility in commonly used organic solvents,high thermal stability as well as morphological stability.Furthermore,due to the numerous aldehyde groups in their branched chains,these hb-poly(α-aminonitrile)s can undergo one-pot,two-step,four-component post-polymerization with high efficiency.This work not only confirms the efficiency of our established catalyst-free multicomponent polymerization of aldehydes,amines and trimethylsilyl cyanide,but also provides a versatile and powerful platform for the preparation of functional hyperbranched polymeric materials.
基金the National Natural Science Foundation of China(grant nos.52020105012 and 523B2025)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)the Analysis and Testing Center of HUST for the assistance in analysis and testing。
文摘Solid polymer electrolytes(SPEs)have garnered considerable interest in the field of lithium metal batteries(LMBs)owing to their exceptional mechanical strength,excellent designability,and heightened safety characteristics.However,their inherently low ion transport efficiency poses a major challenge for their application in LMBs.To address this issue,covalent organic framework(COF)with their ordered ion transport channels,chemical stability,large specific surface area,and designable multifunctional sites has shown promising potential to enhance lithium-ion conduction.Here,we prepared an anionic COF,Tp Pa-COOLi,which can catalyze the ring-opening copolymerization of cyclic lactone monomers for the in situ fabrication of SPEs.The design leverages the high specific surface area of COF to facilitate the absorption of polymerization precursor and catalyze the polymerization within the pores,forming additional COF-polymer junctions that enhance ion transport pathways.The partial exfoliation of COF achieved through these junctions improved its dispersion within the polymer matrix,preserving ion transport channels and facilitating ion transport across COF grain boundaries.By controlling variables to alter the crystallinity of Tp Pa-COOLi and the presence of-COOLi substituents,Tp Pa-COOLi with partial long-range order and-COOLi substituents exhibited superior electrochemical performance.This research demonstrates the potential in constructing high-performance SPEs for LMBs.
基金funding from the National Natural Science Foundation of China(No.22401037)funding from JST CREST(No.JPMJCR23L1)。
文摘Chain-growth radical polymerization of vinyl monomers is essential for producing a wide range of materials with properties tailored to specific applications.However,the inherent resistance of the polymer's C―C backbone to degradation raises significant concerns regarding long-term environmental persistence,which also limits their potential in biomedical applications.To address these challenges,researchers have developed strategies to either degrade preexisting vinyl polymers or incorporate cleavable units into the backbone to modify them with enhanced degradability.This review explores the various approaches aimed at achieving backbone degradability in chain-growth radical polymerization of vinyl monomers,while also highlighting future research directions for the development of application-driven degradable vinyl polymers.
基金financially supported by the National Natural Science Foundation of China(No.22101194)Natural Science Foundation of Jiangsu Province(No.BK20210733)+3 种基金Suzhou Municipal Science and Technology Bureau(No.ZXL2021447)Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices。
文摘The preparation of polypeptide materials in continuous flow reactors shows great potential with improved reproducibility and scalability.However,conventional polypeptide synthesis from the polymerization of N-carboxyanhydride(NCA)is conducted at relatively slow rates,requiring long tubing or ending up with low-molecular-weight polymers.Inspired by recent advances in accelerated NCA polymerization,we report the crown-ether-catalyzed,rapid synthesis of polypeptide materials in cosolvents in flow reactors.The incorporation of low-polarity dichloromethane and the use of catalysts enabled fast conversion of monomers in 30 min,yielding well-defined polypeptides(up to 30 k Da)through a 20-cm tubing reactor.Additionally,random or block copolypeptides were efficiently prepared by incorporating a second NCA monomer.We believe that this work highlights the accelerated polymerization design in flow polymerization processes,offering the continuous production of polypeptide materials.
基金financial support from several corporate sponsors.Contributions were made by the National Natural Science Foundation of China(Grant No.32071332)Shenzhen Science and Technology Innovation Project(Grant No.JCYJ20210324095802006)+2 种基金Ningbo Bureau of Science and Technology(Grant No.2023Z187)TransEasy Medical Tech.Co.,Ltd.(Grant No.2021114)Shenzhen University MedTech Innovation Fund(2023YG027).
文摘Aging is a persistent topic of interest,with skin aging as its most visible manifestation,characterized by a reduction in intact collagen and elastic fibers in the dermis.Hyaluronic acid,a vital component of the extracellular matrix present in the skin,has become a mainstream method for skin rejuvenation through injections.However,the rapid degradation of pure hyaluronic acid,combined with insufficient maintenance duration and often limited therapeutic effects,presents significant challenges for injectable treatments.Additionally,low patient compliance due to discomfort from needles penetrating the dermal layer further complicates its use.In this review,we summarize and compare existing interventions for skin aging,focusing on strategies to prolong the degradation cycle of hyaluronic acid,including variations in cross-linking modalities and injection techniques.We conclude that the injection of cross-linked modified hyaluronic acid via microneedles represents a promising approach to extend the degradation cycle,offering valuable insights for current therapeutic strategies.
基金supported by the National Natural Science Foundation of China(No.22376111)Shandong Provincial Natural Science Foundation(No.ZR2024YQ026)+2 种基金for Excellent Young Scholars,Taishan Scholar Foundation of Shandong Province(No.tsqn202408237)Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province(No.096-1622002)the Research Foundation for Distinguished Scholars of Qingdao Agricultural University(No.663-1117015)。
文摘In recent years,cellulose-based fluorescent polymers have received considerable attention.However,conventional modification methods face challenges such as insolubility in most solvents,fluorescence instability,and environmental risks.In this study,a novel biosynthesis strategy was developed to fabricate fluorescent cellulose by adding fluorescent glucose derivatives to a bacterial fermentation broth.The metabolic activity of bacteria is utilized to achieve in situ polymerization of glucose and its derivatives during the synthesis of bacterial cellulose.Owing to the structural similarity between triphenylamine-modified glucose(TPA-Glc N)and glucose monomers,the TPA-Glc N were efficiently assimilated by the bacterial cells and incorporated into the cellulose matrix,resulting in a uniform distribution of fluorescence.The fluorescence color and intensity of the obtained cellulose could be adjusted by varying the amount of the fluorescent glucose derivatives.Compared to the fluorescent cellulose synthesized through physical dyeing,the fluorescence of the products obtained by in situ polymerization showed higher intensity and stability.Furthermore,fluorescent bacterial cellulose can be hydrolyzed into nanocellulose-based ink,which demonstrates exceptional anti-counterfeiting capabilities under UV light.This biosynthesis method not only overcomes the limitations of traditional modification techniques but also highlights the potential of microbial systems as platforms for synthesizing functional polymers.
基金supported by the National Natural Science Foundation of China(No.22071166)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD).
文摘Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate for in situ construction of conjugated poly(triarylpyridine)s was developed.The polymerization reactions of diacetylarenes,aromatic dialkynones and NH_(4)OAc were performed in dimethylsulfoxide(DMSO)under heating in the presence of potassium tert-butoxide(t-BuOK),affording four conjugated poly(2,4,6-triarylpyridine)s(PTAPs)in satisfactory yields.The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5%weight loss temperatures reaching up to 460℃.They are also electrochemically active.The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features.Moreover,through simply being doped into poly(vinyl alcohol)(PVA)matrix,the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%.This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.
基金financially supported by the National Natural Science Foundation of China(No.52373011)。
文摘Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding proton trap 2,6-di-tert-butylpyridine(DTBP),and the controlled initiation of DCC was confirmed by ^(1)H nuclear magnetic resonance(^(1)H-NMR)spectroscopy and matrix-assisted laser desorption ionization time-offlight mass(MALDI-TOF-MS)spectrometry.The polymerization kinetics were analyzed to for optimizing the polymerization rate.Allyl-telechelic PSTOs(allyl-PSTO-allyl)with molecular weight(Mn)range of 3540–7800 g/mol and narrow molecular weight dispersity(Mw/Mn)about 1.25 were prepared through nucleophilic substitution with allyltrimethylsilane(ATMS)at approximately 40%monomer conversion.The experimental results indicate that the substitution efficiency of ATMS increased with higher ATMS concentration,temperature,and extended reaction time.Nearly unity ally-functionality for allyl-PSTO-allyl was achieved by adding sufficient SnCl_(4) prior to the substitution.
基金supported by the National Key Research and Development Program of China (No. 2022YFB3704700(2022YFB3704702))the National Natural Science Foundation of China (No. 52473096)+1 种基金Major Scientific and Technological Innovation Project of Shandong Province (No. 2021CXGC010901)Taishan Scholar Program
文摘In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a heterogeneous structure using pre-vulcanized powder rubber to replace traditional fillers.The matrix material is composed of a blend of NR and BR,which is widely used in tire manufacturing.By incorporating pre-vulcanized trans-1,4-poly(isoprene-co-butadiene)(TBIR)rubber powder(pVTPR)with different cross-linking densities and contents,significant improvements in the gas barrier properties and CO_(2)permselectivity of the NR/BR/pVTPR composites were observed.The results indicated that compared to NR/BR/TBIR composites prepared through direct blending of NR,BR,and TBIR,the NR/BR/pVTPR composites exhibited markedly superior gas barrier properties.Increasing the cross-linking density of pVTPR resulted in progressive enhancement of the gas barrier properties of the NR/BR/pVTPR composite.For example,the addition of 20 phr pVTPR with a cross-linking density of 346 mol/m^(3)resulted in a 79%improvement in the oxygen barrier property of NR/BR/pVTPR compared to NR/BR,achieving a value of 5.47×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1).Similarly,the nitrogen barrier property improved by 76%compared to NR/BR,reaching 2.4×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1),which is 28%higher than the conventional inner liner material brominated butyl rubber(BIIR,PN2=3.32×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1)).Owing to its low cost,exceptional gas barrier properties,superior adhesion to various tire components,and co-vulcanization capabilities,the NR/BR/pVTPR composite has emerged as a promising alternative to butyl rubber in the inner liner of tires.Furthermore,by fine-tuning the cross-linking density of pVTPR,the high-gas-barrier NR/BR/pVTPR composites also demonstrated remarkable CO_(2)permselectivity,with a CO_(2)/N2 selectivity of 61.4 and a CO_(2)/O_(2)selectivity of 26.12.This innovation provides a novel strategy for CO_(2)capture and separation,with potential applications in future environmental and industrial processes.The multifunctional NR/BR/pVTPR composite,with its superior gas barrier properties and CO_(2)permselectivity,is expected to contribute to the development of safer,greener,and more cost-effective transportation solutions.