A simple and effective photochemical method was developed for cross-linking of polymer gate dielectrics. Laborious synthetic processes for functionalizing polymer dielectrics with photo-cross-linkable groups were avoi...A simple and effective photochemical method was developed for cross-linking of polymer gate dielectrics. Laborious synthetic processes for functionalizing polymer dielectrics with photo-cross-linkable groups were avoided. The photo-cross-linker, BBP-4, was added into host polymers by simple solution blending process, which was capable of abstracting hydrogen atoms from polymers containing active C--H groups upon exposure to ultraviolet (UV) radiation. The cross-linking can be completed with a relatively long wavelength UV light (365 nm). The approach has been applied to methacrylate and styrenic polymers such as commercial poly(methylmethacrylate) (PMMA), poly(iso-butylmethacrylate) (PiBMA) and poly(4-methylstyrene) (PMS). The cross-linked networks enhanced dielectric properties and solvent resistance of the thin films. The bottom-gate organic field-effect transistors (OFETs) through all solution processes on plastic substrate were fabricated. The OFET devices showed low voltage operation and steep subthreshold swing at relatively small gate dielectric capacitance.展开更多
AIM:To compare simultaneous corneal collagen cross-linking(CXL)with intracorneal ring segment(ICRS)implantation versus successive ICRS followed by CXL and detect the impact of the timing of CXL after ICRS implantation...AIM:To compare simultaneous corneal collagen cross-linking(CXL)with intracorneal ring segment(ICRS)implantation versus successive ICRS followed by CXL and detect the impact of the timing of CXL after ICRS implantation in the successive method.METHODS:This is a retrospective study of the records of three groups of patients.Group 1 of 28 patients were operated on with simultaneous ICRS implantation and CXL,group 2 of 32 patients had ICRS implantation followed by CXL after 1mo,and group 3 of 38 patients had ICRS implantation followed by CXL after 3mo.The three groups had follow-up visits after 6,12,and 24mo.RESULTS:The preoperative data,age,and gender differences among 3 groups revealed no significant differences.The postoperative spherical equivalent and best-corrected visual acuity were improved significantly in all groups compared to the baseline,which were more evident in groups 1 and 2.The differences between preoperative and postoperative mean values of mean of K readings(Km)and maximum K reading(Kmax)at 6mo were 4.66 and 4.1 D in group 1,4.43 and 4.64 D in group 2,but 3.2 and 3.4 D in group 3,respectively.The spherical aberrations and the vertical coma showed significant postoperative changes in all groups,and trefoil showed nonsignificant changes.CONCLUSION:Simultaneous and sequential ICRS implantation and CXL at 1mo has similar Km and Kmax better postoperative changes than when both surgeries were done at three-month intervals.展开更多
AIM:To investigate the response of the anterior and posterior corneal surface in femtosecond laser-assisted convex stromal lenticule addition keratoplasty(SLAK)combined with cross-linking(CXL)for treating keratoconus ...AIM:To investigate the response of the anterior and posterior corneal surface in femtosecond laser-assisted convex stromal lenticule addition keratoplasty(SLAK)combined with cross-linking(CXL)for treating keratoconus at the first 3mo of follow-up.METHODS:In this prospective observational study,20 eyes of 20 keratoconus patients who underwent SLAK combined with CXL were included.The morphological indices in keratometry and elevation data were recorded from the Sirius at baseline and 1 and 3mo postoperatively.The mean values of maximum keratometry(K_(max)),flat keratometry(K_(1)),and steep keratometry(K_(2))at the central,3-mm,5-mm,and 7-mm areas were measured from the curvature map.The changes in anterior and posterior corneal elevation under the best-fit sphere(BFS)radius at seven points horizontally of the center,3-mm,5-mm,and 7-mm area from the center at both nasal(N)and temporal(T)side were measured from elevation map.RESULTS:For the front corneal curvature,K_(1),and K_(2) at 3-mm,5-mm,and 7-mm of the anterior corneal surface increased significantly 1mo postoperatively(all P<0.05)and remained unchanged until 3mo(P>0.05).For the back corneal curvature,K_(1) and K_(2) along the 3-mm back meridian significantly decreased after month 1(P=0.002,0.077,respectively).Posterior K_(2)-readings along the 5-mm and 7-mm did not change after surgery(P>0.05).Anterior BFS decreased 1mo(P<0.001)postoperatively but remained unchanged until 3mo after SLAK(P>0.05).There was no change in posterior BFS before and after the surgery(P>0.05).Anterior elevation at N5,N3,central,and T5 points and posterior elevation at central and T7 points shifted backward 1mo postoperatively(all P<0.05)and remained stable until 3mo(P>0.05).CONCLUSION:The myopic SLAK combined with CXL is an economical alternative for stabilizing the corneal surface in severe keraoconus.“Pseudoprogression”occurs in the early phase postoperatively,but it is not an indicator of keratoconus progression.展开更多
Aging is a persistent topic of interest,with skin aging as its most visible manifestation,characterized by a reduction in intact collagen and elastic fibers in the dermis.Hyaluronic acid,a vital component of the extra...Aging is a persistent topic of interest,with skin aging as its most visible manifestation,characterized by a reduction in intact collagen and elastic fibers in the dermis.Hyaluronic acid,a vital component of the extracellular matrix present in the skin,has become a mainstream method for skin rejuvenation through injections.However,the rapid degradation of pure hyaluronic acid,combined with insufficient maintenance duration and often limited therapeutic effects,presents significant challenges for injectable treatments.Additionally,low patient compliance due to discomfort from needles penetrating the dermal layer further complicates its use.In this review,we summarize and compare existing interventions for skin aging,focusing on strategies to prolong the degradation cycle of hyaluronic acid,including variations in cross-linking modalities and injection techniques.We conclude that the injection of cross-linked modified hyaluronic acid via microneedles represents a promising approach to extend the degradation cycle,offering valuable insights for current therapeutic strategies.展开更多
Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and ...Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and Cu)of the anode.Herein,we report the synthesis of a stable three-dimensional network structure of the PAA-PEA(polyacrylic acid-polyether amines)polymer binder through intermolecular physicochemical dual cross-linking.By incorporating polar functional groups,the binder molecules not only form strong C-O-Si,N-Si,O=C-O-C,and O=C-O-Cu covalent bonds but also enhance non-covalent interactions with Si,C,and Cu,thereby improving adhesion between the binder and each interface of the anode.Furthermore,weak hydrogen bonds,acting as"sacrificial bonds",dissipate energy and disperse accumulated stress,improving the material flexibility.Due to the high mechanical stability of the framework,which combines both rigidity and flexibility and the coupling effect at the three interfaces,the movement and separation of electrode components are effectively restrained,significantly enhancing the cycling stability of silicon-graphite anodes.The PAA-PEA 2000 electrode exhibits a capacity retention of 78% after 500 cycles at a current density of 0.2 A g^(-1).This work provides insights into the mechanism of binders and guides the design of polymer binders for high-performance Si-based electrodes.展开更多
LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instab...LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instability currently hinder its broader application.Herein,inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules(polyethylene glycol-400,PEG-400),the pomegranate-type LiMn_(0.5)Fe_(0.5)PO_(4)-0.5@C(P-LMFP@C)cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method.The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor,which prevents agglomeration during sintering.The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li^(+)transport kinetics,improving the rate performance and cycling stability.As a result,the designed P-LMFP@C has remarkable electrochemical behavior,boasting excellent capacity retention(98%after 100 cycles at the 1C rate)and rate capability(91 mAh·g^(-1)at 20C).Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.展开更多
In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a ...In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a heterogeneous structure using pre-vulcanized powder rubber to replace traditional fillers.The matrix material is composed of a blend of NR and BR,which is widely used in tire manufacturing.By incorporating pre-vulcanized trans-1,4-poly(isoprene-co-butadiene)(TBIR)rubber powder(pVTPR)with different cross-linking densities and contents,significant improvements in the gas barrier properties and CO_(2)permselectivity of the NR/BR/pVTPR composites were observed.The results indicated that compared to NR/BR/TBIR composites prepared through direct blending of NR,BR,and TBIR,the NR/BR/pVTPR composites exhibited markedly superior gas barrier properties.Increasing the cross-linking density of pVTPR resulted in progressive enhancement of the gas barrier properties of the NR/BR/pVTPR composite.For example,the addition of 20 phr pVTPR with a cross-linking density of 346 mol/m^(3)resulted in a 79%improvement in the oxygen barrier property of NR/BR/pVTPR compared to NR/BR,achieving a value of 5.47×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1).Similarly,the nitrogen barrier property improved by 76%compared to NR/BR,reaching 2.4×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1),which is 28%higher than the conventional inner liner material brominated butyl rubber(BIIR,PN2=3.32×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1)).Owing to its low cost,exceptional gas barrier properties,superior adhesion to various tire components,and co-vulcanization capabilities,the NR/BR/pVTPR composite has emerged as a promising alternative to butyl rubber in the inner liner of tires.Furthermore,by fine-tuning the cross-linking density of pVTPR,the high-gas-barrier NR/BR/pVTPR composites also demonstrated remarkable CO_(2)permselectivity,with a CO_(2)/N2 selectivity of 61.4 and a CO_(2)/O_(2)selectivity of 26.12.This innovation provides a novel strategy for CO_(2)capture and separation,with potential applications in future environmental and industrial processes.The multifunctional NR/BR/pVTPR composite,with its superior gas barrier properties and CO_(2)permselectivity,is expected to contribute to the development of safer,greener,and more cost-effective transportation solutions.展开更多
Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,...Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,composed of N-modified dendritic carbon networks supporting Al_(2)O_(3)nanoparticles,was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate,Al3+and urea.The obtained carbon-supported Al_(2)O_(3)hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state.The introduction of urea enhances the surface N content,the ratio of pyrrolic N,and specific surface area of catalyst,leading to improved adsorption capacity of C=O and the accessibility of active sites.In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor,Al_(2)O_(3)/C-u catalyst achieved a 90%conversion of furfural with 98.0% selectivity to furfuryl alcohol,outperforming that of commercial γ-Al_(2)O_(3).Moreover,Al_(2)O_(3)/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al_(2)O_(3)nanoparticles.This work provides an innovative and facile strategy for fabrication of carbon-supported Al_(2)O_(3)hybrid catalysts with rich AlVspecies,serving as a high selective hydrogenation catalyst through MPV reaction route.展开更多
AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHO...AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHODS:In this prospectively study,130 patients underwent FS-LASIK or FS-LASIK Xtra for high myopia.Their right eyes were selected for inclusion in the study,of which 65 cases of 65 eyes in the FS-LASIK group,65 patients with 65 eyes in the FS-LASIK Xtra group.Patients were evaluated for corneal densitometry at 1,3,and 6mo postoperatively using Pentacam Scheimpflug imaging.RESULTS:Preoperative differences in corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups in different ranges were not statistically significant(P>0.05).Layer-by-layer analysis revealed statistically significant differences in the anterior(120μm),central,and total layer corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups at 1 and 3mo postoperatively(all P<0.05),the FS-LASIK Xtra group is higher than that of the FS-LASIK group.Analysis of different diameter ranges showed statistically significant differences between the FS-LASIK group and the FS-LASIK Xtra group at 1mo postoperatively in the ranges of 0–2,2–6,and 6–10 mm(both P<0.05);At 3mo postoperatively,the FS-LASIK Xtra group is higher than that of the FS-LASIK group in the ranges of 0–2 and 2–6 mm(P<0.05).At 6mo postoperatively,there were no statistically significant differences in corneal densitometry between the FS-LASIK group and the FS-LASIK Xtra group in different diameter ranges(all P>0.05).CONCLUSION:There is an increase in internal corneal densitometry during the early postoperative period after FS-LASIK Xtra for correction of high myopia.However,the densitometry values decreased to the level of conventional FS-LASIK at 6mo after surgery,with the most significant changes observed in the superficial central zone.展开更多
Polyimide(PI)is widely used in high-frequency communication technology due to its exceptional comprehensive properties.However,traditional PI has a relatively elevated dielectric constant and dielectric loss.Herein,th...Polyimide(PI)is widely used in high-frequency communication technology due to its exceptional comprehensive properties.However,traditional PI has a relatively elevated dielectric constant and dielectric loss.Herein,the different cross-linked structures were introduced in PI matrix and conducted a detailed discussion on the influence of cross-linking agent content and cross-linking structure type on the overall performance of PI films.In comparison to the dielectric constant of 2.9 of neat PI,PI with an interchain cross-linking structure containing 2 wt%1,3,5-tris(4-aminophenyl)benzene(TAPB)(interchain-PI-2)exhibited the reduced dielectric constant of 2.55 at 1 MHz.The PI films with intrachain crosslinking structure containing 2 wt%TAPB(intrachain-PI-2)exhibited the lowest dielectric constant of 2.35 and the minimum dielectric loss of0.0075 at 1 MHz.It was due to the more entanglement junctions of intrachain-PI resulting in decreased carrier transport.The thermal expansion coefficients of both interchain-PI and intrachain-PI films were effectively reduced.Moreover,in contrast to interchain-PI films,the intrachain-PI films maintained colorlessness and transparency as the cross-linking agent content increased.This work compared the effects of two different cross-linked structures on the performance of PI films and provided a feasible way to obtain low-k PI films with excellent comprehensive performance for 5G applications.展开更多
Due to their great potential in wearable and portable electronics,flexible perovskite solar cells(FPSCs)have been extensively studied.The major challenges in the practical applications of FPSCs are efficiency,operatio...Due to their great potential in wearable and portable electronics,flexible perovskite solar cells(FPSCs)have been extensively studied.The major challenges in the practical applications of FPSCs are efficiency,operational stability,and mechanical stability.Herein,we developed a facile approach by incorporating a cross-linking oligomer of trimethylolpropane ethoxylate triacrylate(TET)into perovskite films to simultaneously enhance the power conversion efficiency(PCE)and stability of FPSCs.A PCE of 20.32%was achieved,which are among the best results for the inverted FPSCs.Both mechanical and environmental stabilities were improved for the TET-incorporated FPSCs.In particular,the PCE retained approximately87%of its initial value after 20,000 bending cycles at a radius of 4 mm.The inverted FPSCs retained 85%of the initial PCE after 500 h storage at 85°C and 90%after 900 h continuous one-sun illumination.A joint experiment–theory analysis ascribed the underlying mechanism to the reduced defect densities,improved crystallinity,and stability of the perovskite absorbers on flexible substrates caused by TET incorporation.展开更多
Elastomer blends,among which natural rubber(NR)and butadiene rubber(BR),are involved in many components of the automotive/tire industry.A comprehensive understanding of their mechanical behavior requires,among other f...Elastomer blends,among which natural rubber(NR)and butadiene rubber(BR),are involved in many components of the automotive/tire industry.A comprehensive understanding of their mechanical behavior requires,among other features,a detailed description of the crosslink density in these mixtures.In the case of vulcanized immiscible blends,the distribution of the cross-link density within each of the NR-and BR-rich domains is key information,but difficult to determine using the conventional approaches used for one-component crosslinked elastomers.In this study,the vulcanization within NR/BR blends is investigated using a robust^(1)H double-quantum(DQ)MAS recoupling experiment,BaBa-xy16.Two kinds of cross-linked NR/BR blends were considered with two different microstructures for the BR component.The bulk organization of the resulting blends was first probed by analyzing the^(1)H spin-lattice relaxation behavior.In a second step,BaBa-xy16 was used to investigate,in a selective way,the cross-link heterogeneities within NR/BR blends.In particular,for immiscible NR/BR mixtures,the distribution of the cross-link density between both phases was compared and the observed differences were discussed.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i...Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.展开更多
To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on...To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.21674060,21274087,61674102,and 61334008)National Key R&D Program (No.2016YFB0401100)
文摘A simple and effective photochemical method was developed for cross-linking of polymer gate dielectrics. Laborious synthetic processes for functionalizing polymer dielectrics with photo-cross-linkable groups were avoided. The photo-cross-linker, BBP-4, was added into host polymers by simple solution blending process, which was capable of abstracting hydrogen atoms from polymers containing active C--H groups upon exposure to ultraviolet (UV) radiation. The cross-linking can be completed with a relatively long wavelength UV light (365 nm). The approach has been applied to methacrylate and styrenic polymers such as commercial poly(methylmethacrylate) (PMMA), poly(iso-butylmethacrylate) (PiBMA) and poly(4-methylstyrene) (PMS). The cross-linked networks enhanced dielectric properties and solvent resistance of the thin films. The bottom-gate organic field-effect transistors (OFETs) through all solution processes on plastic substrate were fabricated. The OFET devices showed low voltage operation and steep subthreshold swing at relatively small gate dielectric capacitance.
文摘AIM:To compare simultaneous corneal collagen cross-linking(CXL)with intracorneal ring segment(ICRS)implantation versus successive ICRS followed by CXL and detect the impact of the timing of CXL after ICRS implantation in the successive method.METHODS:This is a retrospective study of the records of three groups of patients.Group 1 of 28 patients were operated on with simultaneous ICRS implantation and CXL,group 2 of 32 patients had ICRS implantation followed by CXL after 1mo,and group 3 of 38 patients had ICRS implantation followed by CXL after 3mo.The three groups had follow-up visits after 6,12,and 24mo.RESULTS:The preoperative data,age,and gender differences among 3 groups revealed no significant differences.The postoperative spherical equivalent and best-corrected visual acuity were improved significantly in all groups compared to the baseline,which were more evident in groups 1 and 2.The differences between preoperative and postoperative mean values of mean of K readings(Km)and maximum K reading(Kmax)at 6mo were 4.66 and 4.1 D in group 1,4.43 and 4.64 D in group 2,but 3.2 and 3.4 D in group 3,respectively.The spherical aberrations and the vertical coma showed significant postoperative changes in all groups,and trefoil showed nonsignificant changes.CONCLUSION:Simultaneous and sequential ICRS implantation and CXL at 1mo has similar Km and Kmax better postoperative changes than when both surgeries were done at three-month intervals.
基金Supported by the Social Development Grant of Shaanxi Province(No.2022SF-404)the Science and Technology Program of Xi’an,China(No.23YXYJ0010,No.23YXYJ0037)+1 种基金the Research Project of Xi’an Health Commission(No.2024ms05)the Technology Innovation Supporting Program of Shaanxi(No.2024RS-CXTD-11).
文摘AIM:To investigate the response of the anterior and posterior corneal surface in femtosecond laser-assisted convex stromal lenticule addition keratoplasty(SLAK)combined with cross-linking(CXL)for treating keratoconus at the first 3mo of follow-up.METHODS:In this prospective observational study,20 eyes of 20 keratoconus patients who underwent SLAK combined with CXL were included.The morphological indices in keratometry and elevation data were recorded from the Sirius at baseline and 1 and 3mo postoperatively.The mean values of maximum keratometry(K_(max)),flat keratometry(K_(1)),and steep keratometry(K_(2))at the central,3-mm,5-mm,and 7-mm areas were measured from the curvature map.The changes in anterior and posterior corneal elevation under the best-fit sphere(BFS)radius at seven points horizontally of the center,3-mm,5-mm,and 7-mm area from the center at both nasal(N)and temporal(T)side were measured from elevation map.RESULTS:For the front corneal curvature,K_(1),and K_(2) at 3-mm,5-mm,and 7-mm of the anterior corneal surface increased significantly 1mo postoperatively(all P<0.05)and remained unchanged until 3mo(P>0.05).For the back corneal curvature,K_(1) and K_(2) along the 3-mm back meridian significantly decreased after month 1(P=0.002,0.077,respectively).Posterior K_(2)-readings along the 5-mm and 7-mm did not change after surgery(P>0.05).Anterior BFS decreased 1mo(P<0.001)postoperatively but remained unchanged until 3mo after SLAK(P>0.05).There was no change in posterior BFS before and after the surgery(P>0.05).Anterior elevation at N5,N3,central,and T5 points and posterior elevation at central and T7 points shifted backward 1mo postoperatively(all P<0.05)and remained stable until 3mo(P>0.05).CONCLUSION:The myopic SLAK combined with CXL is an economical alternative for stabilizing the corneal surface in severe keraoconus.“Pseudoprogression”occurs in the early phase postoperatively,but it is not an indicator of keratoconus progression.
基金financial support from several corporate sponsors.Contributions were made by the National Natural Science Foundation of China(Grant No.32071332)Shenzhen Science and Technology Innovation Project(Grant No.JCYJ20210324095802006)+2 种基金Ningbo Bureau of Science and Technology(Grant No.2023Z187)TransEasy Medical Tech.Co.,Ltd.(Grant No.2021114)Shenzhen University MedTech Innovation Fund(2023YG027).
文摘Aging is a persistent topic of interest,with skin aging as its most visible manifestation,characterized by a reduction in intact collagen and elastic fibers in the dermis.Hyaluronic acid,a vital component of the extracellular matrix present in the skin,has become a mainstream method for skin rejuvenation through injections.However,the rapid degradation of pure hyaluronic acid,combined with insufficient maintenance duration and often limited therapeutic effects,presents significant challenges for injectable treatments.Additionally,low patient compliance due to discomfort from needles penetrating the dermal layer further complicates its use.In this review,we summarize and compare existing interventions for skin aging,focusing on strategies to prolong the degradation cycle of hyaluronic acid,including variations in cross-linking modalities and injection techniques.We conclude that the injection of cross-linked modified hyaluronic acid via microneedles represents a promising approach to extend the degradation cycle,offering valuable insights for current therapeutic strategies.
基金financial support from the National Natural Science Foundation of China[grant number 21878299]。
文摘Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and Cu)of the anode.Herein,we report the synthesis of a stable three-dimensional network structure of the PAA-PEA(polyacrylic acid-polyether amines)polymer binder through intermolecular physicochemical dual cross-linking.By incorporating polar functional groups,the binder molecules not only form strong C-O-Si,N-Si,O=C-O-C,and O=C-O-Cu covalent bonds but also enhance non-covalent interactions with Si,C,and Cu,thereby improving adhesion between the binder and each interface of the anode.Furthermore,weak hydrogen bonds,acting as"sacrificial bonds",dissipate energy and disperse accumulated stress,improving the material flexibility.Due to the high mechanical stability of the framework,which combines both rigidity and flexibility and the coupling effect at the three interfaces,the movement and separation of electrode components are effectively restrained,significantly enhancing the cycling stability of silicon-graphite anodes.The PAA-PEA 2000 electrode exhibits a capacity retention of 78% after 500 cycles at a current density of 0.2 A g^(-1).This work provides insights into the mechanism of binders and guides the design of polymer binders for high-performance Si-based electrodes.
基金supported by the Key Technologies R&D Program of Xiamen(No.3502Z20231057)Industry Leading Key Projects of Fujian Province(No.2022H0057)+2 种基金the National Natural Science Foundation of China(No.21975212)High-Level Talent Start-Up Foundation of Xiamen Institute of Technology for financial support(No.YKJ23017R)Graduate Science and Technology Innovation Program of Xiamen University of Technology(No.YKJCX2023194).
文摘LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instability currently hinder its broader application.Herein,inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules(polyethylene glycol-400,PEG-400),the pomegranate-type LiMn_(0.5)Fe_(0.5)PO_(4)-0.5@C(P-LMFP@C)cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method.The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor,which prevents agglomeration during sintering.The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li^(+)transport kinetics,improving the rate performance and cycling stability.As a result,the designed P-LMFP@C has remarkable electrochemical behavior,boasting excellent capacity retention(98%after 100 cycles at the 1C rate)and rate capability(91 mAh·g^(-1)at 20C).Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.
基金supported by the National Key Research and Development Program of China (No. 2022YFB3704700(2022YFB3704702))the National Natural Science Foundation of China (No. 52473096)+1 种基金Major Scientific and Technological Innovation Project of Shandong Province (No. 2021CXGC010901)Taishan Scholar Program
文摘In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a heterogeneous structure using pre-vulcanized powder rubber to replace traditional fillers.The matrix material is composed of a blend of NR and BR,which is widely used in tire manufacturing.By incorporating pre-vulcanized trans-1,4-poly(isoprene-co-butadiene)(TBIR)rubber powder(pVTPR)with different cross-linking densities and contents,significant improvements in the gas barrier properties and CO_(2)permselectivity of the NR/BR/pVTPR composites were observed.The results indicated that compared to NR/BR/TBIR composites prepared through direct blending of NR,BR,and TBIR,the NR/BR/pVTPR composites exhibited markedly superior gas barrier properties.Increasing the cross-linking density of pVTPR resulted in progressive enhancement of the gas barrier properties of the NR/BR/pVTPR composite.For example,the addition of 20 phr pVTPR with a cross-linking density of 346 mol/m^(3)resulted in a 79%improvement in the oxygen barrier property of NR/BR/pVTPR compared to NR/BR,achieving a value of 5.47×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1).Similarly,the nitrogen barrier property improved by 76%compared to NR/BR,reaching 2.4×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1),which is 28%higher than the conventional inner liner material brominated butyl rubber(BIIR,PN2=3.32×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1)).Owing to its low cost,exceptional gas barrier properties,superior adhesion to various tire components,and co-vulcanization capabilities,the NR/BR/pVTPR composite has emerged as a promising alternative to butyl rubber in the inner liner of tires.Furthermore,by fine-tuning the cross-linking density of pVTPR,the high-gas-barrier NR/BR/pVTPR composites also demonstrated remarkable CO_(2)permselectivity,with a CO_(2)/N2 selectivity of 61.4 and a CO_(2)/O_(2)selectivity of 26.12.This innovation provides a novel strategy for CO_(2)capture and separation,with potential applications in future environmental and industrial processes.The multifunctional NR/BR/pVTPR composite,with its superior gas barrier properties and CO_(2)permselectivity,is expected to contribute to the development of safer,greener,and more cost-effective transportation solutions.
基金China Postdoctoral Science Foundation (2023M733451)Dalian Innovation Team in Key Areas(2020RT06)Engineering Research Center for Key Aromatic Compounds and LiaoNing Key Laboratory,Liaoning Provincial Natural Science Foundation (Doctoral Research Start-up Fund 2024-BSBA-37)。
文摘Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,composed of N-modified dendritic carbon networks supporting Al_(2)O_(3)nanoparticles,was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate,Al3+and urea.The obtained carbon-supported Al_(2)O_(3)hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state.The introduction of urea enhances the surface N content,the ratio of pyrrolic N,and specific surface area of catalyst,leading to improved adsorption capacity of C=O and the accessibility of active sites.In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor,Al_(2)O_(3)/C-u catalyst achieved a 90%conversion of furfural with 98.0% selectivity to furfuryl alcohol,outperforming that of commercial γ-Al_(2)O_(3).Moreover,Al_(2)O_(3)/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al_(2)O_(3)nanoparticles.This work provides an innovative and facile strategy for fabrication of carbon-supported Al_(2)O_(3)hybrid catalysts with rich AlVspecies,serving as a high selective hydrogenation catalyst through MPV reaction route.
基金Supported by Shandong Province Medical Staff Science and Technology Innovation Program Project(No.SDYWZGKCJH2022021).
文摘AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHODS:In this prospectively study,130 patients underwent FS-LASIK or FS-LASIK Xtra for high myopia.Their right eyes were selected for inclusion in the study,of which 65 cases of 65 eyes in the FS-LASIK group,65 patients with 65 eyes in the FS-LASIK Xtra group.Patients were evaluated for corneal densitometry at 1,3,and 6mo postoperatively using Pentacam Scheimpflug imaging.RESULTS:Preoperative differences in corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups in different ranges were not statistically significant(P>0.05).Layer-by-layer analysis revealed statistically significant differences in the anterior(120μm),central,and total layer corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups at 1 and 3mo postoperatively(all P<0.05),the FS-LASIK Xtra group is higher than that of the FS-LASIK group.Analysis of different diameter ranges showed statistically significant differences between the FS-LASIK group and the FS-LASIK Xtra group at 1mo postoperatively in the ranges of 0–2,2–6,and 6–10 mm(both P<0.05);At 3mo postoperatively,the FS-LASIK Xtra group is higher than that of the FS-LASIK group in the ranges of 0–2 and 2–6 mm(P<0.05).At 6mo postoperatively,there were no statistically significant differences in corneal densitometry between the FS-LASIK group and the FS-LASIK Xtra group in different diameter ranges(all P>0.05).CONCLUSION:There is an increase in internal corneal densitometry during the early postoperative period after FS-LASIK Xtra for correction of high myopia.However,the densitometry values decreased to the level of conventional FS-LASIK at 6mo after surgery,with the most significant changes observed in the superficial central zone.
基金financially supported by the National Natural Science Foundation of China(No.52103029)。
文摘Polyimide(PI)is widely used in high-frequency communication technology due to its exceptional comprehensive properties.However,traditional PI has a relatively elevated dielectric constant and dielectric loss.Herein,the different cross-linked structures were introduced in PI matrix and conducted a detailed discussion on the influence of cross-linking agent content and cross-linking structure type on the overall performance of PI films.In comparison to the dielectric constant of 2.9 of neat PI,PI with an interchain cross-linking structure containing 2 wt%1,3,5-tris(4-aminophenyl)benzene(TAPB)(interchain-PI-2)exhibited the reduced dielectric constant of 2.55 at 1 MHz.The PI films with intrachain crosslinking structure containing 2 wt%TAPB(intrachain-PI-2)exhibited the lowest dielectric constant of 2.35 and the minimum dielectric loss of0.0075 at 1 MHz.It was due to the more entanglement junctions of intrachain-PI resulting in decreased carrier transport.The thermal expansion coefficients of both interchain-PI and intrachain-PI films were effectively reduced.Moreover,in contrast to interchain-PI films,the intrachain-PI films maintained colorlessness and transparency as the cross-linking agent content increased.This work compared the effects of two different cross-linked structures on the performance of PI films and provided a feasible way to obtain low-k PI films with excellent comprehensive performance for 5G applications.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the National Natural Science Foundation of China(61825402)。
文摘Due to their great potential in wearable and portable electronics,flexible perovskite solar cells(FPSCs)have been extensively studied.The major challenges in the practical applications of FPSCs are efficiency,operational stability,and mechanical stability.Herein,we developed a facile approach by incorporating a cross-linking oligomer of trimethylolpropane ethoxylate triacrylate(TET)into perovskite films to simultaneously enhance the power conversion efficiency(PCE)and stability of FPSCs.A PCE of 20.32%was achieved,which are among the best results for the inverted FPSCs.Both mechanical and environmental stabilities were improved for the TET-incorporated FPSCs.In particular,the PCE retained approximately87%of its initial value after 20,000 bending cycles at a radius of 4 mm.The inverted FPSCs retained 85%of the initial PCE after 500 h storage at 85°C and 90%after 900 h continuous one-sun illumination.A joint experiment–theory analysis ascribed the underlying mechanism to the reduced defect densities,improved crystallinity,and stability of the perovskite absorbers on flexible substrates caused by TET incorporation.
基金financial support from the French National Research Agency(ANR)[grant number ANR-22-CE06-0031]。
文摘Elastomer blends,among which natural rubber(NR)and butadiene rubber(BR),are involved in many components of the automotive/tire industry.A comprehensive understanding of their mechanical behavior requires,among other features,a detailed description of the crosslink density in these mixtures.In the case of vulcanized immiscible blends,the distribution of the cross-link density within each of the NR-and BR-rich domains is key information,but difficult to determine using the conventional approaches used for one-component crosslinked elastomers.In this study,the vulcanization within NR/BR blends is investigated using a robust^(1)H double-quantum(DQ)MAS recoupling experiment,BaBa-xy16.Two kinds of cross-linked NR/BR blends were considered with two different microstructures for the BR component.The bulk organization of the resulting blends was first probed by analyzing the^(1)H spin-lattice relaxation behavior.In a second step,BaBa-xy16 was used to investigate,in a selective way,the cross-link heterogeneities within NR/BR blends.In particular,for immiscible NR/BR mixtures,the distribution of the cross-link density between both phases was compared and the observed differences were discussed.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.
基金The National Key Research and Development Program of China(No.2023YFC3805003)。
文摘To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings.