This paper presents a wireless sensor network (WSN) access control algorithm designed to minimize WSN node energy consumption. Based on slotted ALOHA protocol, this algorithm incorporates the power control of physical...This paper presents a wireless sensor network (WSN) access control algorithm designed to minimize WSN node energy consumption. Based on slotted ALOHA protocol, this algorithm incorporates the power control of physical layer, the transmitting probability of medium access control (MAC) layer, and the automatic repeat request (ARQ) of link layer. In this algorithm, a cross-layer optimization is preformed to minimizing the energy consuming per bit. Through theory deducing, the transmitting probability and transmitting power level is determined, and the relationship between energy consuming per bit and throughput per node is provided. Analytical results show that the cross-layer algorithm results in a significant energy savings relative to layered design subject to the same throughput per node, and the energy saving is extraordinary in the low throughput region.展开更多
In this paper, we propose a cross-layer design combining adaptive modulation coding (AMC) and automatic repeat request (ARQ) to minimize the bit energy consumption under both packet loss rate and retransmission delay ...In this paper, we propose a cross-layer design combining adaptive modulation coding (AMC) and automatic repeat request (ARQ) to minimize the bit energy consumption under both packet loss rate and retransmission delay constraints. We analyze the best constellation size of M-ary square quadrature amplitude modulation (MQAM) in different distance, and give advice on retransmission limits under different packet loss rates. The impacts of path loss fading and additive white Gaussian noise (AWGN)are taken into consideration. The computation of energy consumption includes the circuit, transmission and retransmission energies at both transmitter and receiver sides. Numerical results are obtained to verify the validity of our design. We also show that the retransmission benefit varies with the packet loss rate constraint.展开更多
We consider the extension of network lifetime of battery driven wireless sensor networks by splitting the sensing area into uniform clusters and implementing heterogeneous modulation schemes at different members of th...We consider the extension of network lifetime of battery driven wireless sensor networks by splitting the sensing area into uniform clusters and implementing heterogeneous modulation schemes at different members of the clusters. A cross-layer optimization has been proposed to reduce total energy expenditure of the network;at network layer, routing is done through uniform clusters;at MAC layer, each sensor node of the cluster is assigned fixed or variable time slots and at physical layer different member of the clusters is assigned different modulation techniques. MATLAB simulation proved substantial network lifetime gains.展开更多
It is extremely challenging for the 5G User Equipment(UE)to meet the requirement of low-latency data transmission with higher achievable data rates.And user plane processing of 5G protocol stack(PS)is one of the domin...It is extremely challenging for the 5G User Equipment(UE)to meet the requirement of low-latency data transmission with higher achievable data rates.And user plane processing of 5G protocol stack(PS)is one of the dominating components for end-to-end data transmission in the network system.In this paper,a cross-layer buffer management scheme(CLBM)is proposed.CLBM adopts a zero-copy technique for protocol data unit(PDU)processing between protocol layers and allows to improve the memory operation efficiency significantly with reduced processing latency and CPU usage.Moreover,the PS performance profiling(PSperf)tool,a general evaluation framework for the performance measurement and analysis of PS,is implemented based on the OpenAirInterface(OAI)5G platform.The evaluation result shows that compared with the PS of OAI the CLBM strategy reduces the CPU usage of RLC,PDCP,and MAC layer processing significantly up to 20.6%,63.4%,and 38.8%,respectively.In result,the processing delay of the whole user plane of PS also has been reduced distinctly at various offered traffic load.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(...To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(CAL-LSN) is proposed in this paper. In CALLSN, mobile agents are used to gather routing information actively. CAL-LSN can utilise the information of the physical layer to make routing decision during the route construction phase. In order to achieve load balancing, CALLSN makes use of a multi-objective optimization model. Meanwhile, how to take the value of some key parameters is discussed while designing the algorithm so as to improve the reliability. The performance is measured by the packet delivery rate, the end-to-end delay, the link utilization and delay jitter. Simulation results show that CAL-LSN performs well in balancing traffic load and increasing the packet delivery rate. Meanwhile, the end-to-end delay and delay jitter performance can meet the requirement of video transmission.展开更多
Existing systems use key performance indicators(KPIs)as metrics for physical layer(PHY)optimization,which suffers from the problem of overoptimization,because some unnecessary PHY enhancements are imperceptible to ter...Existing systems use key performance indicators(KPIs)as metrics for physical layer(PHY)optimization,which suffers from the problem of overoptimization,because some unnecessary PHY enhancements are imperceptible to terminal users and thus induce additional cost and energy waste.Therefore,it is necessary to utilize directly the quality of experience(QoE)of user as a metric of optimization,which can achieve the global optimum of QoE under cost and energy constraints.However,QoE is still a metric of application layer that cannot be easily used to design and optimize the PHY.To address this problem,we in this paper propose a novel end-to-end QoE(E2E-QoE)based optimization architecture at the user-side for the first time.Specifically,a cross-layer parameterized model is proposed to establish the relationship between PHY and E2E-QoE.Based on this,an E2E-QoE oriented PHY anomaly diagnosis method is further designed to locate the time and root cause of anomalies.Finally,we investigate to optimize the PHY algorithm directly based on the E2E-QoE.The proposed frameworks and algorithms are all validated using the data from real fifth-generation(5G)mobile system,which show that using E2E-QoE as the metric of PHY optimization is feasible and can outperform existing schemes.展开更多
Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, del...Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).展开更多
This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the acc...This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the access point of a WiFi wireless local area network and extends the PHY-MAC run-time cross-layer scheduling strategy that we introduced in (Mangharam et al., 2005; Pollin et al., 2005) to also consider congested network situations where video packets have to be dropped. We show that an optimal solution at PHY-MAC level can be highly suboptimal at application level, and then show that making the cross-layer framework application-aware through a prioritized dropping policy capitalizing on the inherent scalability of Motion JPEG2000 video streams leads to drastic average video quality improvements and inter-user quality variation reductions of as much as 10 dB PSNR, without affecting the overall energy consumption requirements.展开更多
Ultra wideband (UWB) network brings both chance and challenge to personal area wireless communications. Compared with other IEEE 802 small range wireless protocols (such as WLAN and Bluetooth), UWB has both extrem...Ultra wideband (UWB) network brings both chance and challenge to personal area wireless communications. Compared with other IEEE 802 small range wireless protocols (such as WLAN and Bluetooth), UWB has both extremely high bandwidth (up to 480 Mbpa) and low radiation. Moreover, the structured MAC layer of UWB is the fundamental difference to WLAN. The top one is that only when two UWB devices belong to the same piconet can they communicate with each other directly, which means that we must jointly consider topology formation and routing when deploying UWB networks because the interaction between routing and topology formation makes separate optimization ineffective. This paper tries to optimize UWB network from a cross-layer point of view. Specifically, given device spatial distribution and traffic requirement, we want to form piconets and determine routing jointly, to maximize the overall throughput. We formulate the problem of joint optimization to mixed-integer programming and give a practical lower bound that is very close to the theoretical upper bound in our simulation. Furthermore, our lower bound is much better than an algorithm that only considers topology formation in UWB networks.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien...In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall...In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization.展开更多
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul...Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Pro...This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment.展开更多
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I...The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.展开更多
文摘This paper presents a wireless sensor network (WSN) access control algorithm designed to minimize WSN node energy consumption. Based on slotted ALOHA protocol, this algorithm incorporates the power control of physical layer, the transmitting probability of medium access control (MAC) layer, and the automatic repeat request (ARQ) of link layer. In this algorithm, a cross-layer optimization is preformed to minimizing the energy consuming per bit. Through theory deducing, the transmitting probability and transmitting power level is determined, and the relationship between energy consuming per bit and throughput per node is provided. Analytical results show that the cross-layer algorithm results in a significant energy savings relative to layered design subject to the same throughput per node, and the energy saving is extraordinary in the low throughput region.
文摘In this paper, we propose a cross-layer design combining adaptive modulation coding (AMC) and automatic repeat request (ARQ) to minimize the bit energy consumption under both packet loss rate and retransmission delay constraints. We analyze the best constellation size of M-ary square quadrature amplitude modulation (MQAM) in different distance, and give advice on retransmission limits under different packet loss rates. The impacts of path loss fading and additive white Gaussian noise (AWGN)are taken into consideration. The computation of energy consumption includes the circuit, transmission and retransmission energies at both transmitter and receiver sides. Numerical results are obtained to verify the validity of our design. We also show that the retransmission benefit varies with the packet loss rate constraint.
文摘We consider the extension of network lifetime of battery driven wireless sensor networks by splitting the sensing area into uniform clusters and implementing heterogeneous modulation schemes at different members of the clusters. A cross-layer optimization has been proposed to reduce total energy expenditure of the network;at network layer, routing is done through uniform clusters;at MAC layer, each sensor node of the cluster is assigned fixed or variable time slots and at physical layer different member of the clusters is assigned different modulation techniques. MATLAB simulation proved substantial network lifetime gains.
基金Supported by the National Key R&D Project of China(No.2020YFB1807803)。
文摘It is extremely challenging for the 5G User Equipment(UE)to meet the requirement of low-latency data transmission with higher achievable data rates.And user plane processing of 5G protocol stack(PS)is one of the dominating components for end-to-end data transmission in the network system.In this paper,a cross-layer buffer management scheme(CLBM)is proposed.CLBM adopts a zero-copy technique for protocol data unit(PDU)processing between protocol layers and allows to improve the memory operation efficiency significantly with reduced processing latency and CPU usage.Moreover,the PS performance profiling(PSperf)tool,a general evaluation framework for the performance measurement and analysis of PS,is implemented based on the OpenAirInterface(OAI)5G platform.The evaluation result shows that compared with the PS of OAI the CLBM strategy reduces the CPU usage of RLC,PDCP,and MAC layer processing significantly up to 20.6%,63.4%,and 38.8%,respectively.In result,the processing delay of the whole user plane of PS also has been reduced distinctly at various offered traffic load.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金supported by the National Natural Science Foundation of China under Grant No.61271281the National High Technology Research and Development Program of China (863 Program) under Grant No.SS2013AA010503
文摘To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(CAL-LSN) is proposed in this paper. In CALLSN, mobile agents are used to gather routing information actively. CAL-LSN can utilise the information of the physical layer to make routing decision during the route construction phase. In order to achieve load balancing, CALLSN makes use of a multi-objective optimization model. Meanwhile, how to take the value of some key parameters is discussed while designing the algorithm so as to improve the reliability. The performance is measured by the packet delivery rate, the end-to-end delay, the link utilization and delay jitter. Simulation results show that CAL-LSN performs well in balancing traffic load and increasing the packet delivery rate. Meanwhile, the end-to-end delay and delay jitter performance can meet the requirement of video transmission.
文摘Existing systems use key performance indicators(KPIs)as metrics for physical layer(PHY)optimization,which suffers from the problem of overoptimization,because some unnecessary PHY enhancements are imperceptible to terminal users and thus induce additional cost and energy waste.Therefore,it is necessary to utilize directly the quality of experience(QoE)of user as a metric of optimization,which can achieve the global optimum of QoE under cost and energy constraints.However,QoE is still a metric of application layer that cannot be easily used to design and optimize the PHY.To address this problem,we in this paper propose a novel end-to-end QoE(E2E-QoE)based optimization architecture at the user-side for the first time.Specifically,a cross-layer parameterized model is proposed to establish the relationship between PHY and E2E-QoE.Based on this,an E2E-QoE oriented PHY anomaly diagnosis method is further designed to locate the time and root cause of anomalies.Finally,we investigate to optimize the PHY algorithm directly based on the E2E-QoE.The proposed frameworks and algorithms are all validated using the data from real fifth-generation(5G)mobile system,which show that using E2E-QoE as the metric of PHY optimization is feasible and can outperform existing schemes.
基金supported in part by the project of National Natural Science Foundation of China under Grant No. 61071075National Science and Technology Major Project of China under Grant No. 2010ZX03003-001-02+1 种基金National Science and Technology Major Project of China under Grant No. 2011ZX03004003the Chinese Ministry of Education in the project of the Fundamental Research Funds for the Central Universities under Grant No.2011YJS216
文摘Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).
文摘This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the access point of a WiFi wireless local area network and extends the PHY-MAC run-time cross-layer scheduling strategy that we introduced in (Mangharam et al., 2005; Pollin et al., 2005) to also consider congested network situations where video packets have to be dropped. We show that an optimal solution at PHY-MAC level can be highly suboptimal at application level, and then show that making the cross-layer framework application-aware through a prioritized dropping policy capitalizing on the inherent scalability of Motion JPEG2000 video streams leads to drastic average video quality improvements and inter-user quality variation reductions of as much as 10 dB PSNR, without affecting the overall energy consumption requirements.
文摘Ultra wideband (UWB) network brings both chance and challenge to personal area wireless communications. Compared with other IEEE 802 small range wireless protocols (such as WLAN and Bluetooth), UWB has both extremely high bandwidth (up to 480 Mbpa) and low radiation. Moreover, the structured MAC layer of UWB is the fundamental difference to WLAN. The top one is that only when two UWB devices belong to the same piconet can they communicate with each other directly, which means that we must jointly consider topology formation and routing when deploying UWB networks because the interaction between routing and topology formation makes separate optimization ineffective. This paper tries to optimize UWB network from a cross-layer point of view. Specifically, given device spatial distribution and traffic requirement, we want to form piconets and determine routing jointly, to maximize the overall throughput. We formulate the problem of joint optimization to mixed-integer programming and give a practical lower bound that is very close to the theoretical upper bound in our simulation. Furthermore, our lower bound is much better than an algorithm that only considers topology formation in UWB networks.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金Supported by the Science and Technology Project of Guangxi(Guike AD23023002)。
文摘In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
基金the support of EPIC - Energy Production Innovation Center, hosted by the University of Campinas (UNICAMP) and sponsored by Equinor Brazil and FAPESP - Sao Paulo Research Foundation (2021/04878- 7 and 2017/15736-3)financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior Brasil (CAPES) - Financing Code 001
文摘In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization.
基金upported by the National Natural Science Foundation of China(Grant No.62305184)the Major Key Project of Pengcheng Laboratory(Grant No.PCL2024A1)+1 种基金the Basic and Applied Basic Research Foundation of Guangdong Province(Grant No.2023A1515012932)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.WDZC20220818100259004).
文摘Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
文摘This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment.
基金supported by the National Natural Science Foundation of China(Nos.62272418,62102058)Basic Public Welfare Research Program of Zhejiang Province(No.LGG18E050011)the Major Open Project of Key Laboratory for Advanced Design and Intelligent Computing of the Ministry of Education under Grant ADIC2023ZD001,National Undergraduate Training Program on Innovation and Entrepreneurship(No.202410345054).
文摘The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.