Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with ot...Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with other elements, and the environment. It is subsequently composed of many components, only some of which take part in the couplings. In this paper we present a framework to detect the component correlation pattern. Firstly, the interested trajectories are decomposed into components by using decomposing methods such as the Fourier expansion and the Wavelet transformation. Secondly, the cross-correlations between the components are calculated, resulting into a component cross-correlation matrix(network).Finally, the dominant structure in the network is identified to characterize the coupling pattern in the system. Several deterministic dynamical models turn out to be characterized with rich structures such as the clustering of the components. The pattern of correlation between respiratory(RESP) and ECG signals is composed of five sub-clusters that are mainly formed by the components in ECG signal. Interestingly, only 7 components from RESP(scattered in four sub-clusters) take part in the realization of coupling between the two signals.展开更多
To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ens...To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ensemble empirical mode decomposition(EEMD)and cross-correlation algorithm was proposed.Firstly,a fast Fourier transform(FFT)spectrum analysis was utilized to ascertain the frequency range of the signal.Secondly,data acquisition was conducted at an appropriate sampling frequency,and the acquired Doppler flow rate signal was then decomposed into a series of intrinsic mode functions(IMFs)by EEMD.Subsequently,these decomposed IMFs were recombined based on their energy entropy,and then the noise of the recombined Doppler flow rate signal was removed by cross-correlation filtering.Finally,an ideal ultrasonic Doppler flow rate signal was extracted.Simulation and experimental verification show that the proposed Doppler flow signal processing method can effectively enhance the signal-to-noise ratio(SNR)and extend the lower limit of measurement of the ultrasonic Doppler flow meter.展开更多
The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed t...The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed the vertical flexure value of the crust for a specific elastic thickness using a given topographic dataset. The gravity disturbance due to the topography was determined after the calculation. A grid of values for the elastic thickness parameter was generated. Then, a moving correlation was performed between the observed gravity data(representing actual surface data) and the calculated data from the forward modeling. The optimum elastic thickness of the particular point corresponded to the highest correlation coefficient. The methodology was tested on synthetic data and showed that the synthetic depth closely matched the original depth, including the elastic thickness value. To validate the results, the described procedure was applied to a real dataset from the Barreirinhas Basin, situated in the northeastern region of Brazil. The results show that the obtained crustal depth is highly correlated with the depth from known models. Additionally, we noted that the elastic thickness behaves as expected, decreasing from the continent towards the ocean. Based on the results, this method has the potential to be employed as a direct estimate of crustal depth and elastic thickness for any region.展开更多
The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ...The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.展开更多
This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features ...This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).展开更多
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind...With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.展开更多
Landslides significantly threaten lives and infrastructure, especially in seismically active regions. This study conducts a probabilistic analysis of seismic landslide runout behavior, leveraging a large-deformation f...Landslides significantly threaten lives and infrastructure, especially in seismically active regions. This study conducts a probabilistic analysis of seismic landslide runout behavior, leveraging a large-deformation finite-element (LDFE) model that accounts for the three-dimensional (3D) spatial variability and cross-correlation in soil strength — a reflection of natural soils' inherent properties. LDFE model results are validated by comparing them against previous studies, followed by an examination of the effects of univariable, uncorrelated bivariable, and cross-correlated bivariable random fields on landslide runout behavior. The study's findings reveal that integrating variability in both friction angle and cohesion within uncorrelated bivariable random fields markedly influences runout distances when compared with univariable random fields. Moreover, the cross-correlation of soil cohesion and friction angle dramatically affects runout behavior, with positive correlations enlarging and negative correlations reducing runout distances. Transitioning from two-dimensional (2D) to 3D analyses, a more realistic representation of sliding surface, landslide velocity, runout distance and final deposit morphology is achieved. The study highlights that 2D random analyses substantially underestimate the mean value and overestimate the variability of runout distance, underscoring the importance of 3D modeling in accurately predicting landslide behavior. Overall, this work emphasizes the essential role of understanding 3D cross-correlation in soil strength for landslide hazard assessment and mitigation strategies.展开更多
Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally...Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally,approximately 15 million PTB cases are reported annually,posing a huge burden on individual families and the community economy[2].In the context of climate warming,O_(3) pollution has continuously increased in many countries in recent years,including China;therefore,scientific communities and government agencies must strive to mitigate ozone pollution.展开更多
With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant c...With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.展开更多
In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes u...In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.展开更多
Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security...Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.展开更多
Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced...Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced in underwater environments where pollutants can impede the operation of these optical devices,significantly degrading or even compromising their optical properties.The glass catfish,known for its remarkable transparency in water,maintains surface cleanliness and clarity despite exposure to contaminants,impurities abrasion,and hydraulic pressure.Inspired by the glass catfish’s natural attributes,this study introduces a new solution named subaquatic abrasion-resistant and anti-fouling window(SAAW).Utilizing femtosecond laser ablation and electrodeposition,the SAAW is engineered by embedding fine metal bone structures into a transparent substrate and anti-fouling sliding layer,akin to the sturdy bones among catfish’s body.This approach significantly bolsters the window’s abrasion resistance and anti-fouling performance while maintaining high light transmittance.The sliding layer on the SAAW’s surface remarkably reduces the friction of various liquids,which is the reason that SAAW owns the great anti-fouling property.The SAAW demonstrates outstanding optical clarity even after enduring hundreds of sandpaper abrasions,attributing to the fine metal bone structures bearing all external forces and protecting the sliding layer of SAAW.Furthermore,it exhibits exceptional resistance to biological adhesion and underwater pressure.In a green algae environment,the window remains clean with minimal change in transmittance over one month.Moreover,it retains its wettability and anti-fouling properties when subjected to a depth of 30 m of underwater pressure for 30 d.Hence,the SAAW prepared by femtosecond laser ablation and electrodeposition presents a promising strategy for developing stable optical windows in liquid environments.展开更多
Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories...Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories for several days after learning,and this process primarily occurs during sleep[1,2].The prevailing view suggests that sharp-wave ripples(SWRs)during non-rapid eye movement(NREM)sleep serve as key electrophysiological signatures of memory replay[3,4].However,only a small portion of SWRs contain memory replay[5].The direct relationship among SWRs,memory replay,and memory consolidation remains an open question.Another unresolved issue is how the hippocampus simultaneously reactivates both new and old memories while preventing interference.展开更多
Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_...Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_(2)O molecules at the electrode-electrolyte interface tend to directly split under bias potential.Therefore,the composition and properties of the interfacial microenvironment are the crux for optimizing ESW.Herein,we developed a heterogel electrolyte with wide ESW(4.88 V)and satisfactory ionic conductivity(4.4 mS/cm)inspired by the bicontinuous architecture and surfactant self-assembly behavior in the ionic liquid microemulsion-based template.This electrolyte was capable of expanding the ESW through the dynamic oil/water/electrode interface ternary structure,which enriched the oil phase and assembled the hydrophobic surfactant tails at the interface to prevent H_(2)O molecules from approaching the electrode surface.Moreover,the surfactant Tween 20 and polymer network effectively suppressed the activity of H_(2)O molecules through H-bond interactions,which was beneficial in expanding the operating voltage range and improving the temperature tolerance.The prepared gel electrolyte demonstrated unparalleled adaptability in various aqueous lithium-based energy storage devices.Notably,the lithium-ion capacitor showed an extended operating voltage of 2.2 V and could provide a high power density of 1350.36 W/kg at an energy density of 6 Wh/kg.It maintained normal power output even in the challenging harsh environment,which enabled 11,000 uninterrupted charge-discharge cycles at 0℃.This work focuses on the regulation of the interfacial microdomain and the restriction of the degree of freedom of H_(2)O molecules to boost the ESW of aqueous electrolytes,providing a promising strategy for the advancement of energy storage technologies.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11875042 and 11505114)the Shanghai Project for Construction of Top Disciplines (Grant No. USST-SYS-01)。
文摘Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with other elements, and the environment. It is subsequently composed of many components, only some of which take part in the couplings. In this paper we present a framework to detect the component correlation pattern. Firstly, the interested trajectories are decomposed into components by using decomposing methods such as the Fourier expansion and the Wavelet transformation. Secondly, the cross-correlations between the components are calculated, resulting into a component cross-correlation matrix(network).Finally, the dominant structure in the network is identified to characterize the coupling pattern in the system. Several deterministic dynamical models turn out to be characterized with rich structures such as the clustering of the components. The pattern of correlation between respiratory(RESP) and ECG signals is composed of five sub-clusters that are mainly formed by the components in ECG signal. Interestingly, only 7 components from RESP(scattered in four sub-clusters) take part in the realization of coupling between the two signals.
基金supported by National Natural Science Foundation of China(No.61973234)Tianjin Science and Technology Plan Project(No.22YDTPJC00090)。
文摘To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ensemble empirical mode decomposition(EEMD)and cross-correlation algorithm was proposed.Firstly,a fast Fourier transform(FFT)spectrum analysis was utilized to ascertain the frequency range of the signal.Secondly,data acquisition was conducted at an appropriate sampling frequency,and the acquired Doppler flow rate signal was then decomposed into a series of intrinsic mode functions(IMFs)by EEMD.Subsequently,these decomposed IMFs were recombined based on their energy entropy,and then the noise of the recombined Doppler flow rate signal was removed by cross-correlation filtering.Finally,an ideal ultrasonic Doppler flow rate signal was extracted.Simulation and experimental verification show that the proposed Doppler flow signal processing method can effectively enhance the signal-to-noise ratio(SNR)and extend the lower limit of measurement of the ultrasonic Doppler flow meter.
文摘The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed the vertical flexure value of the crust for a specific elastic thickness using a given topographic dataset. The gravity disturbance due to the topography was determined after the calculation. A grid of values for the elastic thickness parameter was generated. Then, a moving correlation was performed between the observed gravity data(representing actual surface data) and the calculated data from the forward modeling. The optimum elastic thickness of the particular point corresponded to the highest correlation coefficient. The methodology was tested on synthetic data and showed that the synthetic depth closely matched the original depth, including the elastic thickness value. To validate the results, the described procedure was applied to a real dataset from the Barreirinhas Basin, situated in the northeastern region of Brazil. The results show that the obtained crustal depth is highly correlated with the depth from known models. Additionally, we noted that the elastic thickness behaves as expected, decreasing from the continent towards the ocean. Based on the results, this method has the potential to be employed as a direct estimate of crustal depth and elastic thickness for any region.
文摘The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.
文摘This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).
文摘With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20596)the Shenzhen Science and Technology Program(Grant No.GJHZ20220913142605010)the Jinan Lead Researcher Project(Grant No.202333051).
文摘Landslides significantly threaten lives and infrastructure, especially in seismically active regions. This study conducts a probabilistic analysis of seismic landslide runout behavior, leveraging a large-deformation finite-element (LDFE) model that accounts for the three-dimensional (3D) spatial variability and cross-correlation in soil strength — a reflection of natural soils' inherent properties. LDFE model results are validated by comparing them against previous studies, followed by an examination of the effects of univariable, uncorrelated bivariable, and cross-correlated bivariable random fields on landslide runout behavior. The study's findings reveal that integrating variability in both friction angle and cohesion within uncorrelated bivariable random fields markedly influences runout distances when compared with univariable random fields. Moreover, the cross-correlation of soil cohesion and friction angle dramatically affects runout behavior, with positive correlations enlarging and negative correlations reducing runout distances. Transitioning from two-dimensional (2D) to 3D analyses, a more realistic representation of sliding surface, landslide velocity, runout distance and final deposit morphology is achieved. The study highlights that 2D random analyses substantially underestimate the mean value and overestimate the variability of runout distance, underscoring the importance of 3D modeling in accurately predicting landslide behavior. Overall, this work emphasizes the essential role of understanding 3D cross-correlation in soil strength for landslide hazard assessment and mitigation strategies.
基金supported by the Natural Science Foundation of Henan Province[grant number:242300420115]Key Scientific Research Projects in Universities of Henan Province[grant number:23A330006].
文摘Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally,approximately 15 million PTB cases are reported annually,posing a huge burden on individual families and the community economy[2].In the context of climate warming,O_(3) pollution has continuously increased in many countries in recent years,including China;therefore,scientific communities and government agencies must strive to mitigate ozone pollution.
基金supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F020004in part by the National College Student Innovation and Research Training Program under Grant 202313283002.
文摘With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.
基金supported by the National Natural Science Foundation of China (No.62275193)。
文摘In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.
基金supported by the National Undergraduate Innovation and Entrepreneurship Training Program of China(Project No.202510559076)at Jinan University,a nationwide initiative administered by the Ministry of Educationthe National Natural Science Foundation of China(NSFC)under Grant No.62172189.
文摘Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.
基金supported by the National Science Foundation of China under Grant Nos(Nos.12127806,62175195)the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced in underwater environments where pollutants can impede the operation of these optical devices,significantly degrading or even compromising their optical properties.The glass catfish,known for its remarkable transparency in water,maintains surface cleanliness and clarity despite exposure to contaminants,impurities abrasion,and hydraulic pressure.Inspired by the glass catfish’s natural attributes,this study introduces a new solution named subaquatic abrasion-resistant and anti-fouling window(SAAW).Utilizing femtosecond laser ablation and electrodeposition,the SAAW is engineered by embedding fine metal bone structures into a transparent substrate and anti-fouling sliding layer,akin to the sturdy bones among catfish’s body.This approach significantly bolsters the window’s abrasion resistance and anti-fouling performance while maintaining high light transmittance.The sliding layer on the SAAW’s surface remarkably reduces the friction of various liquids,which is the reason that SAAW owns the great anti-fouling property.The SAAW demonstrates outstanding optical clarity even after enduring hundreds of sandpaper abrasions,attributing to the fine metal bone structures bearing all external forces and protecting the sliding layer of SAAW.Furthermore,it exhibits exceptional resistance to biological adhesion and underwater pressure.In a green algae environment,the window remains clean with minimal change in transmittance over one month.Moreover,it retains its wettability and anti-fouling properties when subjected to a depth of 30 m of underwater pressure for 30 d.Hence,the SAAW prepared by femtosecond laser ablation and electrodeposition presents a promising strategy for developing stable optical windows in liquid environments.
基金supported by the National Natural Science Foundation of China(32371028,32300822,U24A20373,and 82071177)the Shanghai Rising-Star Program(24QA2704800)+2 种基金the Shanghai Jiao Tong University 2030 InitiativeShanghai Municipal Health Commission(202340046)the Fund for Excellent Young Scholars of Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine.
文摘Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories for several days after learning,and this process primarily occurs during sleep[1,2].The prevailing view suggests that sharp-wave ripples(SWRs)during non-rapid eye movement(NREM)sleep serve as key electrophysiological signatures of memory replay[3,4].However,only a small portion of SWRs contain memory replay[5].The direct relationship among SWRs,memory replay,and memory consolidation remains an open question.Another unresolved issue is how the hippocampus simultaneously reactivates both new and old memories while preventing interference.
基金supported by the National Natural Science Foundation of China(Grant Nos.22032003 and 22072073)。
文摘Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_(2)O molecules at the electrode-electrolyte interface tend to directly split under bias potential.Therefore,the composition and properties of the interfacial microenvironment are the crux for optimizing ESW.Herein,we developed a heterogel electrolyte with wide ESW(4.88 V)and satisfactory ionic conductivity(4.4 mS/cm)inspired by the bicontinuous architecture and surfactant self-assembly behavior in the ionic liquid microemulsion-based template.This electrolyte was capable of expanding the ESW through the dynamic oil/water/electrode interface ternary structure,which enriched the oil phase and assembled the hydrophobic surfactant tails at the interface to prevent H_(2)O molecules from approaching the electrode surface.Moreover,the surfactant Tween 20 and polymer network effectively suppressed the activity of H_(2)O molecules through H-bond interactions,which was beneficial in expanding the operating voltage range and improving the temperature tolerance.The prepared gel electrolyte demonstrated unparalleled adaptability in various aqueous lithium-based energy storage devices.Notably,the lithium-ion capacitor showed an extended operating voltage of 2.2 V and could provide a high power density of 1350.36 W/kg at an energy density of 6 Wh/kg.It maintained normal power output even in the challenging harsh environment,which enabled 11,000 uninterrupted charge-discharge cycles at 0℃.This work focuses on the regulation of the interfacial microdomain and the restriction of the degree of freedom of H_(2)O molecules to boost the ESW of aqueous electrolytes,providing a promising strategy for the advancement of energy storage technologies.