In order to study the universality of the interactions among different markets, we analyze the cross-correlation matrix of the price of the Chinese and American bank stocks. We then find that the stock prices of the e...In order to study the universality of the interactions among different markets, we analyze the cross-correlation matrix of the price of the Chinese and American bank stocks. We then find that the stock prices of the emerging market are more correlated than that of the developed market. Considering that the values of the components for the eigenvector may be positive or negative, we analyze the differences between two markets in combination with the endogenous and exogenous events which influence the financial markets. We find that the sparse pattern of components of eigenvectors out of the threshold value has no change in American bank stocks before and after the subprime crisis. However, it changes from sparse to dense for Chinese bank stocks. By using the threshold value to exclude the external factors, we simulate the interactions in financial markets.展开更多
Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with ot...Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with other elements, and the environment. It is subsequently composed of many components, only some of which take part in the couplings. In this paper we present a framework to detect the component correlation pattern. Firstly, the interested trajectories are decomposed into components by using decomposing methods such as the Fourier expansion and the Wavelet transformation. Secondly, the cross-correlations between the components are calculated, resulting into a component cross-correlation matrix(network).Finally, the dominant structure in the network is identified to characterize the coupling pattern in the system. Several deterministic dynamical models turn out to be characterized with rich structures such as the clustering of the components. The pattern of correlation between respiratory(RESP) and ECG signals is composed of five sub-clusters that are mainly formed by the components in ECG signal. Interestingly, only 7 components from RESP(scattered in four sub-clusters) take part in the realization of coupling between the two signals.展开更多
The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured o...The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured one from the database of the collected spectra by employing the cross-correlation operation,subsequently deriving the predicted value via weighted calculation.As the algorithm uses the complete information in the measured raw spectrum,more accurate results and larger measurement range can be obtained.Additionally,the improved cross-correlation algorithm also has the potential to improve the measurement speed compared to current standards due to the possibility for the collection using low sampling rate.This work presents an important algorithm towards a simpler,faster way to improve the demodulation performance of VE-OFS.展开更多
To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ens...To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ensemble empirical mode decomposition(EEMD)and cross-correlation algorithm was proposed.Firstly,a fast Fourier transform(FFT)spectrum analysis was utilized to ascertain the frequency range of the signal.Secondly,data acquisition was conducted at an appropriate sampling frequency,and the acquired Doppler flow rate signal was then decomposed into a series of intrinsic mode functions(IMFs)by EEMD.Subsequently,these decomposed IMFs were recombined based on their energy entropy,and then the noise of the recombined Doppler flow rate signal was removed by cross-correlation filtering.Finally,an ideal ultrasonic Doppler flow rate signal was extracted.Simulation and experimental verification show that the proposed Doppler flow signal processing method can effectively enhance the signal-to-noise ratio(SNR)and extend the lower limit of measurement of the ultrasonic Doppler flow meter.展开更多
Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes ...Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes a novel image encryption algorithm specifically designed for grayscale image security.This research introduces a new Cantor diagonal matrix permutation method.The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix,where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice(CML).The high initial value sensitivity of the CML system makes the permutation method highly sensitive and secure.Additionally,leveraging fractal theory,this study introduces a chaotic fractal matrix and applies this matrix in the diffusion process.This chaotic fractal matrix exhibits selfsimilarity and irregularity.Using the Cantor diagonal matrix and chaotic fractal matrix,this paper introduces a fast image encryption algorithm involving two diffusion steps and one permutation step.Moreover,the algorithm achieves robust security with only a single encryption round,ensuring high operational efficiency.Experimental results show that the proposed algorithm features an expansive key space,robust security,high sensitivity,high efficiency,and superior statistical properties for the ciphered images.Thus,the proposed algorithm not only provides a practical solution for secure image transmission but also bridges fractal theory with image encryption techniques,thereby opening new research avenues in chaotic cryptography and advancing the development of information security technology.展开更多
Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological prop...Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.展开更多
Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain...Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized refleetivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(...In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(RSCCT)for BOC(kn,n)signals is proposed.In this paper,the principle of signal decomposition is combined with the traditional acquisition algorithm structure,and then based on the method of reconstructing the correlation function.The method firstly gets the sub-pseudorandom noise(PRN)code by decomposing the local PRN code,then uses BOC(kn,n)and the sub-PRN code cross-correlation to get the sub cross-correlation function.Finally,the correlation peak with a single peak is obtained by reconstructing the sub cross-correlation function so that the ambiguities of BOC acquisition are removed.The simulation shows that RSCCT can completely eliminate the side peaks of BOC(kn,n)group signals while maintaining the narrow correlation of BOC,and its computational complexity is equivalent to sub carrier phase cancellation(SCPC)and autocorrelation side-peak cancellation technique(ASPeCT),and it reduces the computational complexity relative to BPSK-like.For BOC(n,n),the acquisition sensitivity of RSCCT is 3.25 dB,0.81 dB and 0.25 dB higher than binary phase shift keying(BPSK)-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.91,3.0 and 3.7 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.For BOC(2n,n),the acquisition sensitivity of RSCCT is 5.5 dB,1.25 dB and 2.69 dB higher than BPSK-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.02,1.68 and 2.12 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.展开更多
This paper describes the estimation of cloud motion using lag cross-correlation. In order to compute the lag cross correlation, the Bayes Decision method is used first to identify cloud and surface of earth. Then clou...This paper describes the estimation of cloud motion using lag cross-correlation. In order to compute the lag cross correlation, the Bayes Decision method is used first to identify cloud and surface of earth. Then cloud motion vectors are retrieved at a subset of points through multiple applications of a cross-correlation analysis. An objective analysis is used to define displacement at every satellite pixel throughout the domain and smooth the local inconsistencies. Cloud motions are then produced with a backward trajectory technique by using these displacement vectors.展开更多
Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven method...Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven methods primarily use the limited frequency bandwidth information of seismic data and can invert P-wave impedance with high accuracy,but not high resolution.Conventional data-driven methods mainly employ the information from well-log data and can provide high-accuracy and highresolution P-wave impedance owing to the superior nonlinear curve fitting capacity of neural networks.However,these methods require a significant number of training samples,which are frequently insufficient.To obtain P-wave impedance with both high accuracy and high resolution,we propose a model-data-driven inversion method using Res Nets and the normalized zero-lag cross-correlation objective function which is effective for avoiding local minima and suppressing random noise.By using initial models and training samples,the proposed model-data-driven method can invert P-wave impedance with satisfactory accuracy and resolution.Tests on synthetic and field data demonstrate the proposed method’s efficacy and practicability.展开更多
In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads o...In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.展开更多
The algorithm of Binary Image Cross-Correlation (BICC) was developed to measure the unsteady flow field. A vortex flow field was used to test the algorithm by numerical simulation. The results show that BICC is an e...The algorithm of Binary Image Cross-Correlation (BICC) was developed to measure the unsteady flow field. A vortex flow field was used to test the algorithm by numerical simulation. The results show that BICC is an effective algorithm for particle identification from consecutive images, the accurate velocity vector field can be obtained. The real velocity field in a valve chamber was measured by BICC in this study. From the full-field velocity information, the pressure and vorticity fields were also extracted by post-processing. (Edited author abstract) 6 Refs.展开更多
The amount of seismological data is rapidly increasing with accumulating observational time and increasing number of stations, requiring modern technique to provide adequate computing power. In present study, we propo...The amount of seismological data is rapidly increasing with accumulating observational time and increasing number of stations, requiring modern technique to provide adequate computing power. In present study, we proposed a framework to calculate large-scale noise crosscorrelation functions(NCFs) using public cloud service from ALIYUN. The entire computation is factorized into small pieces which are performed parallelly on specified number of virtual servers provided by the cloud. Using data from most seismic stations in China, five NCF databases are built. The results show that, comparing to the time cost using a single server, the entire time can be reduced over two orders of magnitude depending number of evoked virtual servers. This could reduce computation time from months to less than 12 hours. Based on obtained massive NCFs, the global body waves are retrieved through array interferometry and agree well with those from earthquakes. This leads to a solution to process massive seismic dataset within an affordable time and is applicable to other large-scale computing in seismological researches.展开更多
Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR(signal-to-noise ratio) surface waves have been extracted from cross-...Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR(signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracted in most of ambient noise studies, are thought to be more difficult to retrieve from regular ambient noise data processing. By stacking cross-correlations of ambient noise in 50 km inter-station distance bins in China, western United States and Europe, we observed coherent 20–100 s core phases(Sc S, PKIKPPKIKP, PcP PKPPKP) and crustal-mantle phases(Pn, P, PL, Sn, S, SPL, SnS n, SS, SSPL) at distances ranging from 0 to 4000 km. Our results show that these crustal-mantle phases show diverse characteristics due to different substructure and sources of body waves beneath different regions while the core phases are relatively robust and can be retrieved as long as stations are available. Further analysis indicates that the SNR of these body-wave phases depends on a compromise between stacking fold in spatial domain and the coherence of pre-stacked cross-correlations. Spatially stacked cross-correlations of seismic noise can provide new virtual seismograms for paths that complement earthquake data and that contain valuable information on the structure of the Earth. The extracted crustal-mantle phases can be used to study lithospheric heterogeneities and the robust core phases are significantly useful to study the deep structure of the Earth, such as detecting fine heterogeneities of the core-mantle boundary and constraining differential rotation of the inner core.展开更多
In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play re...In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play respective preponderance. Theoretical analyses and simulationstudies have shown that the detecting system is very sensitive to the periodic pulse signal understrong noise background and has exceedingly powerful capability of suppressing complex noise.展开更多
The Galileo E1 open service (OS) and the global positioning system (GPS) L1C are intending to use the multiplexed binary offset carrier (MBOC) modulation in E1/L1 band, including both pilot and data components. ...The Galileo E1 open service (OS) and the global positioning system (GPS) L1C are intending to use the multiplexed binary offset carrier (MBOC) modulation in E1/L1 band, including both pilot and data components. The impact of data and pilot codes cross-correlation on the distortion of the discriminator function (i.e., the S-curve) is investigated, when only the pilot (or data) components of MBOC signals are tracked. It is shown that the modulation schemes and the receiver configuration (e.g., the correlator spacing) strongly affect the S-curve bias. In this paper, two methods are proposed to optimize the data/pilot code pairs of Galileo E1 OS and GPS L1C. The optimization goal is to obtain the minimum average S-curve bias when tracking only the pilot components a the specific correlator spacing. Figures of merit, such as S-curve bias, correlation loss and code tracking variance have been adopted for analyzing and comparing the un-optimized and optimized code pairs. Simulation results show that the optimized data/pilot code pairs could significantly mitigate the intra-channel codes cross-correlation, and then improve the code tracking performance of MBOC signals.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11275186,91024026,and FOM2014OF001)the University of Shanghai for Science and Technology(USST)of Humanities and Social Sciences,China(Grant Nos.USST13XSZ05 and 11YJA790231)
文摘In order to study the universality of the interactions among different markets, we analyze the cross-correlation matrix of the price of the Chinese and American bank stocks. We then find that the stock prices of the emerging market are more correlated than that of the developed market. Considering that the values of the components for the eigenvector may be positive or negative, we analyze the differences between two markets in combination with the endogenous and exogenous events which influence the financial markets. We find that the sparse pattern of components of eigenvectors out of the threshold value has no change in American bank stocks before and after the subprime crisis. However, it changes from sparse to dense for Chinese bank stocks. By using the threshold value to exclude the external factors, we simulate the interactions in financial markets.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11875042 and 11505114)the Shanghai Project for Construction of Top Disciplines (Grant No. USST-SYS-01)。
文摘Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with other elements, and the environment. It is subsequently composed of many components, only some of which take part in the couplings. In this paper we present a framework to detect the component correlation pattern. Firstly, the interested trajectories are decomposed into components by using decomposing methods such as the Fourier expansion and the Wavelet transformation. Secondly, the cross-correlations between the components are calculated, resulting into a component cross-correlation matrix(network).Finally, the dominant structure in the network is identified to characterize the coupling pattern in the system. Several deterministic dynamical models turn out to be characterized with rich structures such as the clustering of the components. The pattern of correlation between respiratory(RESP) and ECG signals is composed of five sub-clusters that are mainly formed by the components in ECG signal. Interestingly, only 7 components from RESP(scattered in four sub-clusters) take part in the realization of coupling between the two signals.
文摘The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured one from the database of the collected spectra by employing the cross-correlation operation,subsequently deriving the predicted value via weighted calculation.As the algorithm uses the complete information in the measured raw spectrum,more accurate results and larger measurement range can be obtained.Additionally,the improved cross-correlation algorithm also has the potential to improve the measurement speed compared to current standards due to the possibility for the collection using low sampling rate.This work presents an important algorithm towards a simpler,faster way to improve the demodulation performance of VE-OFS.
基金supported by National Natural Science Foundation of China(No.61973234)Tianjin Science and Technology Plan Project(No.22YDTPJC00090)。
文摘To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ensemble empirical mode decomposition(EEMD)and cross-correlation algorithm was proposed.Firstly,a fast Fourier transform(FFT)spectrum analysis was utilized to ascertain the frequency range of the signal.Secondly,data acquisition was conducted at an appropriate sampling frequency,and the acquired Doppler flow rate signal was then decomposed into a series of intrinsic mode functions(IMFs)by EEMD.Subsequently,these decomposed IMFs were recombined based on their energy entropy,and then the noise of the recombined Doppler flow rate signal was removed by cross-correlation filtering.Finally,an ideal ultrasonic Doppler flow rate signal was extracted.Simulation and experimental verification show that the proposed Doppler flow signal processing method can effectively enhance the signal-to-noise ratio(SNR)and extend the lower limit of measurement of the ultrasonic Doppler flow meter.
基金supported by the National Natural Science Foundation of China(62376106)The Science and Technology Development Plan of Jilin Province(20250102212JC).
文摘Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes a novel image encryption algorithm specifically designed for grayscale image security.This research introduces a new Cantor diagonal matrix permutation method.The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix,where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice(CML).The high initial value sensitivity of the CML system makes the permutation method highly sensitive and secure.Additionally,leveraging fractal theory,this study introduces a chaotic fractal matrix and applies this matrix in the diffusion process.This chaotic fractal matrix exhibits selfsimilarity and irregularity.Using the Cantor diagonal matrix and chaotic fractal matrix,this paper introduces a fast image encryption algorithm involving two diffusion steps and one permutation step.Moreover,the algorithm achieves robust security with only a single encryption round,ensuring high operational efficiency.Experimental results show that the proposed algorithm features an expansive key space,robust security,high sensitivity,high efficiency,and superior statistical properties for the ciphered images.Thus,the proposed algorithm not only provides a practical solution for secure image transmission but also bridges fractal theory with image encryption techniques,thereby opening new research avenues in chaotic cryptography and advancing the development of information security technology.
基金supported by the Shenzhen Hong Kong Joint Funding Project,No.SGDX20230116093645007(to LY)the Shenzhen Science and Technology Innovation Committee International Cooperation Project,No.GJHZ20200731095608025(to LY)+7 种基金Shenzhen Development and Reform Commission’s Intelligent Diagnosis,Treatment and Prevention of Adolescent Spinal Health Public Service Platform,No.S2002Q84500835(to LY)Shenzhen Medical Research Fund,No.B2303005(to LY)Team-based Medical Science Research Program,No.2024YZZ02(to LY)Zhejiang Provincial Natural Science Foundation of China,No.LWQ20H170001(to RL)Basic Research Project of Shenzhen Science and Technology from Shenzhen Science and Technology Innovation Commission,No.JCYJ20210324103010029(to BY)Shenzhen Second People’s Hospital Clinical Research Fund of Guangdong Province High-level Hospital Construction Project,Nos.2023yjlcyj029(to BY),2023yjlcyj021(to LL)Guangdong Basic and Applied Basic Research Foundation,No.2022A1515110679(to LL)China Postdoctoral Science Foundation,No.2022M722203(to GL).
文摘Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.
基金sponsored by The National Natural Science Fund(No.41574098)Sinopec Geophysical Key Laboratory Open Fund(No.wtyjy-wx2016-04-2)
文摘Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized refleetivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
基金supported by the National Science Foundation of China(61561016 61861008+4 种基金 11603041)the Guangxi Natural Science Foundation Project(2018JJA170090)the Innovation Project of Guet Graduate Education(2018YJCX19 2018YJCX31)Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(DH201707)
文摘In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(RSCCT)for BOC(kn,n)signals is proposed.In this paper,the principle of signal decomposition is combined with the traditional acquisition algorithm structure,and then based on the method of reconstructing the correlation function.The method firstly gets the sub-pseudorandom noise(PRN)code by decomposing the local PRN code,then uses BOC(kn,n)and the sub-PRN code cross-correlation to get the sub cross-correlation function.Finally,the correlation peak with a single peak is obtained by reconstructing the sub cross-correlation function so that the ambiguities of BOC acquisition are removed.The simulation shows that RSCCT can completely eliminate the side peaks of BOC(kn,n)group signals while maintaining the narrow correlation of BOC,and its computational complexity is equivalent to sub carrier phase cancellation(SCPC)and autocorrelation side-peak cancellation technique(ASPeCT),and it reduces the computational complexity relative to BPSK-like.For BOC(n,n),the acquisition sensitivity of RSCCT is 3.25 dB,0.81 dB and 0.25 dB higher than binary phase shift keying(BPSK)-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.91,3.0 and 3.7 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.For BOC(2n,n),the acquisition sensitivity of RSCCT is 5.5 dB,1.25 dB and 2.69 dB higher than BPSK-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.02,1.68 and 2.12 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.
文摘This paper describes the estimation of cloud motion using lag cross-correlation. In order to compute the lag cross correlation, the Bayes Decision method is used first to identify cloud and surface of earth. Then cloud motion vectors are retrieved at a subset of points through multiple applications of a cross-correlation analysis. An objective analysis is used to define displacement at every satellite pixel throughout the domain and smooth the local inconsistencies. Cloud motions are then produced with a backward trajectory technique by using these displacement vectors.
基金financially supported by the Important National Science&Technology Specific Project of China(Grant No.2017ZX05018-005)
文摘Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven methods primarily use the limited frequency bandwidth information of seismic data and can invert P-wave impedance with high accuracy,but not high resolution.Conventional data-driven methods mainly employ the information from well-log data and can provide high-accuracy and highresolution P-wave impedance owing to the superior nonlinear curve fitting capacity of neural networks.However,these methods require a significant number of training samples,which are frequently insufficient.To obtain P-wave impedance with both high accuracy and high resolution,we propose a model-data-driven inversion method using Res Nets and the normalized zero-lag cross-correlation objective function which is effective for avoiding local minima and suppressing random noise.By using initial models and training samples,the proposed model-data-driven method can invert P-wave impedance with satisfactory accuracy and resolution.Tests on synthetic and field data demonstrate the proposed method’s efficacy and practicability.
基金supported by the Science Foundation of Jiangsu Province of China (Grant No.BK2011759)
文摘In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.
基金The project supported by the National Natural Science Foundation of China
文摘The algorithm of Binary Image Cross-Correlation (BICC) was developed to measure the unsteady flow field. A vortex flow field was used to test the algorithm by numerical simulation. The results show that BICC is an effective algorithm for particle identification from consecutive images, the accurate velocity vector field can be obtained. The real velocity field in a valve chamber was measured by BICC in this study. From the full-field velocity information, the pressure and vorticity fields were also extracted by post-processing. (Edited author abstract) 6 Refs.
基金supported by National Key R&D Program of China(No.2018YFC1503200)National Natural Science Foundation of China(Nos.41674061,41790463 and 41674058)
文摘The amount of seismological data is rapidly increasing with accumulating observational time and increasing number of stations, requiring modern technique to provide adequate computing power. In present study, we proposed a framework to calculate large-scale noise crosscorrelation functions(NCFs) using public cloud service from ALIYUN. The entire computation is factorized into small pieces which are performed parallelly on specified number of virtual servers provided by the cloud. Using data from most seismic stations in China, five NCF databases are built. The results show that, comparing to the time cost using a single server, the entire time can be reduced over two orders of magnitude depending number of evoked virtual servers. This could reduce computation time from months to less than 12 hours. Based on obtained massive NCFs, the global body waves are retrieved through array interferometry and agree well with those from earthquakes. This leads to a solution to process massive seismic dataset within an affordable time and is applicable to other large-scale computing in seismological researches.
基金supported by the National Science Foundation of China (No. 41374059)the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan) (Nos. CUG090106 and #CUGL100402).
文摘Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR(signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracted in most of ambient noise studies, are thought to be more difficult to retrieve from regular ambient noise data processing. By stacking cross-correlations of ambient noise in 50 km inter-station distance bins in China, western United States and Europe, we observed coherent 20–100 s core phases(Sc S, PKIKPPKIKP, PcP PKPPKP) and crustal-mantle phases(Pn, P, PL, Sn, S, SPL, SnS n, SS, SSPL) at distances ranging from 0 to 4000 km. Our results show that these crustal-mantle phases show diverse characteristics due to different substructure and sources of body waves beneath different regions while the core phases are relatively robust and can be retrieved as long as stations are available. Further analysis indicates that the SNR of these body-wave phases depends on a compromise between stacking fold in spatial domain and the coherence of pre-stacked cross-correlations. Spatially stacked cross-correlations of seismic noise can provide new virtual seismograms for paths that complement earthquake data and that contain valuable information on the structure of the Earth. The extracted crustal-mantle phases can be used to study lithospheric heterogeneities and the robust core phases are significantly useful to study the deep structure of the Earth, such as detecting fine heterogeneities of the core-mantle boundary and constraining differential rotation of the inner core.
文摘In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play respective preponderance. Theoretical analyses and simulationstudies have shown that the detecting system is very sensitive to the periodic pulse signal understrong noise background and has exceedingly powerful capability of suppressing complex noise.
基金National Basic Research Program of China(No.2010CB731805)
文摘The Galileo E1 open service (OS) and the global positioning system (GPS) L1C are intending to use the multiplexed binary offset carrier (MBOC) modulation in E1/L1 band, including both pilot and data components. The impact of data and pilot codes cross-correlation on the distortion of the discriminator function (i.e., the S-curve) is investigated, when only the pilot (or data) components of MBOC signals are tracked. It is shown that the modulation schemes and the receiver configuration (e.g., the correlator spacing) strongly affect the S-curve bias. In this paper, two methods are proposed to optimize the data/pilot code pairs of Galileo E1 OS and GPS L1C. The optimization goal is to obtain the minimum average S-curve bias when tracking only the pilot components a the specific correlator spacing. Figures of merit, such as S-curve bias, correlation loss and code tracking variance have been adopted for analyzing and comparing the un-optimized and optimized code pairs. Simulation results show that the optimized data/pilot code pairs could significantly mitigate the intra-channel codes cross-correlation, and then improve the code tracking performance of MBOC signals.