Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead t...Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead to energy loss.This study employs the classical trajectory Monte Carlo method to study the SI and SC processes of H_(2)O molecules using He^(2+) and C^(6+) projectiles in the energy range of 10 keV/u to 10 MeV/u.The total cross sections,single differential cross sections,impact parameter dependence of SI and SC,and fragmentation cross sections were investigated.Results illustrate that the cross section for SI is the highest when the projectile energy is close to the Bragg peak energy.When the projectile energy is below the Bragg peak energy,the ionized electrons in the forward direction dominate,and the removal of electrons can be associated with large impact parameters.As the projectile energy increases,the emission angle of the electrons gradually transitions from small angles(60°~120°)to large angles(60°~120°),and the removal of electrons is associated with small impact parameters.The energy distributions of the ionized electron are similar when the projectile energy is equal to,below or above the Bragg peak energy.The fragmentation cross sections after SI and SC in the energy range around the Bragg peak were also estimated.展开更多
The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four...The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four C_(6)D_(6)scintillator detectors coupled with pulse height weighting techniques.The resonance parameters were extracted using the multilevel multichannel R-matrix code SAMMY to fit the measured capture yields of the^(165)Ho(n,γ)reaction in the neutron energy range below100 eV.Subsequently,the resonance region’s capture cross sections were reconstructed based on the obtained parameters.Furthermore,the unresolved resonance average cross section of the^(165)Ho(n,γ)reaction was determined relative to that of the standard sample^(197)Au within the neutron energy range of 2 keV to 1 MeV.The experimental data were compared with the recommended nuclear data from the ENDF/B-VIII.0 library,as well as with results of calculations performed using the TALYS-1.9 code.The comparison revealed agreement between the measured^(165)Ho(n,γ)cross sections and these data.The present results are crucial for evaluating the^(165)Ho neutron capture cross section and thus enhance the quality of evaluated nuclear data libraries.They provide valuable guidance for nuclear theoretical models and nuclear astrophysical studies.展开更多
The direct and dissociative ionizations of oxygen molecule are investigated experimen-tally by electron collision with energies from 350 eV to 8000 eV.The absolute ionization cross sections for the product ions(O_(2)^...The direct and dissociative ionizations of oxygen molecule are investigated experimen-tally by electron collision with energies from 350 eV to 8000 eV.The absolute ionization cross sections for the product ions(O_(2)^(2+),O_(2)^(2+)O^(+),O^(2+),and their total)and two Coulomb explosion channels(O^(+)+O^(+)and O^(2+)+O^(+))are obtained by putting the data of O^(2+)on the scale of Ar+from O_(2)and Ar gases mixed with a fixed relative flow ratio of 1:1.The experimental errors are assessed by taking uncertainties of various factors into account.The present absolute cross sections are well consistent with the previous data in the overlapped energy range below 1000 eV.展开更多
The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energ...The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.展开更多
The relativistic binary-encounter-Bethe model with Wannier-type threshold law is employed to obtain the inner-shell ionization cross sections of multi-electron atoms(Ni,Cu,Y,Ag,Au,Yb,Ta,and Pb)for positron impact ener...The relativistic binary-encounter-Bethe model with Wannier-type threshold law is employed to obtain the inner-shell ionization cross sections of multi-electron atoms(Ni,Cu,Y,Ag,Au,Yb,Ta,and Pb)for positron impact energies from the thresholds up to 105ke V.There is good agreement between the present calculations and the experimental data.The constant in the acceleration term derived from the Wannier law is determined to be 0.2 and 0.5 for the K-and L-shells,respectively.展开更多
The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture ...The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture events were detected using four C_(6)D_(6) detectors.The pulse-height weighting technique and double-bunch unfolding method based on Bayesian theory were used in the data analysis.Background deductions,normalization,and corrections were carefully considered to obtain reliable measurement results.The multilevel R-matrix Bayesian code SAMMY was used to extract the resonance parameters in the resolved resonance region(RRR).The average cross sections in the unresolved resonance region(URR)were obtained from 10 to 400 keV.The experimental results were compared with data from several evaluated libraries and previous experi-ments in the RRR and URR.The TALYS code was used to describe the average cross sections in the URR.The astrophysical Maxwell average cross sections(MACSs)of ^(79,81)Br from kT=5 to 100 keV were calculated over a sufficiently wide range of neutron energies.At a thermal energy of kT=30 keV,the MACS value for ^(79)Br 682±68 mb was in good agreement with the KADoNiS v1.0 recommended value.By contrast,the value of 293±29 mb for ^(81)Br was substantially higher than that of the evaluated database and the KADoNiS v1.0 recommended value.展开更多
This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section...This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.展开更多
A new anisotropic potential is fitted to ab initio data. The close-coupling approach is utilized to calculate state-tostate rotational excitation partial wave cross sections for elastic and inelastic collisions of He ...A new anisotropic potential is fitted to ab initio data. The close-coupling approach is utilized to calculate state-tostate rotational excitation partial wave cross sections for elastic and inelastic collisions of He atom with HBr molecule based on the fitted potential. The calculation is performed separately at the incident energies: 75, 100 and 200 meV.The tendency of the elastic and inelastic rotational excitation partial wave cross sections varying with total angular quantum number J is obtained.展开更多
This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in ...This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.展开更多
A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(1...A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(13.5 MeV,13.8 MeV,14.1 MeV,14.4 MeV,14.8 MeV)relative to the^(93)Nb(n,2n)^(92)mNb reaction CS.The target was high-purity natural Xe gas under high pressure.The T(d,n)4He reaction produces neutrons.TALYS code(version 1.95)for nuclear reactions was used for calculations,with default parameters and nuclear level density models.The uncertainties in the measured CS data were thoroughly analyzed using the covariance analysis method.The results were compared with theoretical values,evaluation data,and previous experimental findings.CS data of the 134Xe(n,2n)133mXe and 134Xe(n,2n)133gXe reactions and the corresponding isomeric CS ratios at 13.5 MeV,13.8 MeV,and 14.1 MeV neutron energies are reported for the first time.This research advances our knowledge of pre-equilibrium emission in the(n,2n)reaction channel by resolving inconsistencies in the Xe data.展开更多
Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlu...Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlung photons and annihilation photons with the thick-target method are discussed with the Monte Carlo code PENELOPE. Meanwhile, the Monte Carlo method is also applied to determine the detection efficiencies of X- and γ-ray detectors. Our experimental K-shell ionization cross sections for Ti element are compared with the distorted-wave Born approximation (DWBA) theoretical predictions, and it is found that the agreement of the experimental data and theoretical values is good and this indicates that the experimental method adopted in this study is applicable.展开更多
An interaction potential of the Ne-HC1 van der Waals complex is obtained by utilizing the Huxley analytic potential function to fit the accurate interaction energy data, which have been computed at the coupled cluster...An interaction potential of the Ne-HC1 van der Waals complex is obtained by utilizing the Huxley analytic potential function to fit the accurate interaction energy data, which have been computed at the coupled cluster singles and doubles including connected triple excitations level and with the augmented correlation consistent polarized valence quintuple zeta basis set extended with a set of 3s3p2dlflg mid-bond functions [CCSD (T)/aug-cc-pV5Z-33211]. The close coupling calculation of state-to-state partial cross sections for collision of Ne with HC1 is first performed by employing the fitted interaction potential. This calculation is performed at the incident energies: 40, 60, 75 and 100 meV, separately. The effects of the long-range attractive and the short-range anisotropic interactions on the inelastic state-to-state partial cross sections are discussed in detail. Two maxima are present in the rotationally inelastic partial cross sections and they originate from different mechanisms.展开更多
The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry....The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry. The angles 4°, 10° and 20° were selected as the scattering electron angles. Under high incident energy (≥500 eV) and high asymmetric detection energy, the binary peaks showed abnormal splits. Such abnormal splits have not been observed in atomic target and outer valence orbitals of ionic target, which indicates that an (e, 2e) process for inner valence orbitals of ionic target would be more complicated than outer valence orbitals. Furthermore, some pronounced peaks appeared at certain ejected angles. We considered that these pronounced peaks are probably related to one kind of double-binary collision.展开更多
Ozone is a green house gas. Ozone absorption cross sections have been reported with discrepancies and inconsistencies. In this paper, simultaneous effects of the optical path length and temperature variations on ozone...Ozone is a green house gas. Ozone absorption cross sections have been reported with discrepancies and inconsistencies. In this paper, simultaneous effects of the optical path length and temperature variations on ozone gas absorption cross sections are investigated at different wavelengths. HITRAN 2012, the latest available line list on spectralcalc.com simulator, is used in this study to simulate ozone gas absorption cross sections in relation to the simultaneous effects of the optical path length and temperature at the wavelengths of 603 nm and 575 nm. Results obtained for gas cells with the optical path length from 10 cm to 120 cm show that the decrease in temperatures from 313 K to 103 K results in the increase in ozone gas absorption cross sections. At wavelengths of 603 nm and 575 nm, the percentage increase of ozone gas absorption cross sections is 1.22% and 0.71%, respectively. Results obtained in this study show that in the visible spectrum, at constant pressure, ozone gas absorption cross sections are dependent on the temperature and wavelength but do not depend on the optical path length. Analysis in this work addresses discrepancies in ozone gas absorption cross sections in relation to the temperature in the visible spectrum; thus, the results can be applied to get optimal configuration of high accuracy ozone gas sensors.展开更多
We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with ...We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with the relativistic partial waves. The atom is present in an optical potential which is complex, spherically symmetric, and energy dependent. The optical potential of the atom is the sum of the direct static, dynamic polarization, local exchange and modified absorption potentials. The results obtained by using a modified absorption potential show significant improvements on the unmodified absorption potential results. The present results are generally in good agreement with experimental data available. In addition, the present results indicate that the structure of molecule manifests the observable effects on electron- molecule scattering.展开更多
Certain broad low-energy peaks caused by a single partial wave in total cross sections are explained in terms of phase shifts. Such peaks have been associated with the real part of a Regge pole trajectory, having a ma...Certain broad low-energy peaks caused by a single partial wave in total cross sections are explained in terms of phase shifts. Such peaks have been associated with the real part of a Regge pole trajectory, having a maximum near an integer value of the angular momentum quantum number. At the peak energies, the pertinent partial-wave phase shift was shown to have a local maximum near a value π/2 modulo π. This implies no time delay in the semiclassical context. The phenomenon is a quantum effect, lacking a semiclassical interpretation.展开更多
This paper applies the multiple ellipsoid model to the 16Ne (20Ne, 28Ne, 34Ne)-Na2 collision systems, and calcu- lates integral cross sections for rotational excitation at the incident energy of 190 meV. It can be s...This paper applies the multiple ellipsoid model to the 16Ne (20Ne, 28Ne, 34Ne)-Na2 collision systems, and calcu- lates integral cross sections for rotational excitation at the incident energy of 190 meV. It can be seen that the accuracy of the integral cross sections can be improved by increasing the number of equipotential ellipsoid surfaces. Moreover, by analysing the differences of these integral cross sections, it obtains the change rules of the integral cross sections with the increase of rotational angular quantum number j', and with the change of the mass of isotope substitution neon atom. Finally, the contribution of different regions of the potential to inelastic cross sections for 20Ne-Na2 collision system is investigated at relative incident energy of 190 meV.展开更多
The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radia...The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.12105327 and 11775108)the Hunan Provincial Innovation Foundation For Postgraduate(No.QL20220210)the Advanced Energy Science and Technology Guangdong Laboratory.
文摘Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead to energy loss.This study employs the classical trajectory Monte Carlo method to study the SI and SC processes of H_(2)O molecules using He^(2+) and C^(6+) projectiles in the energy range of 10 keV/u to 10 MeV/u.The total cross sections,single differential cross sections,impact parameter dependence of SI and SC,and fragmentation cross sections were investigated.Results illustrate that the cross section for SI is the highest when the projectile energy is close to the Bragg peak energy.When the projectile energy is below the Bragg peak energy,the ionized electrons in the forward direction dominate,and the removal of electrons can be associated with large impact parameters.As the projectile energy increases,the emission angle of the electrons gradually transitions from small angles(60°~120°)to large angles(60°~120°),and the removal of electrons is associated with small impact parameters.The energy distributions of the ionized electron are similar when the projectile energy is equal to,below or above the Bragg peak energy.The fragmentation cross sections after SI and SC in the energy range around the Bragg peak were also estimated.
基金supported by the National Natural Science Foundation of China(Nos.12465024,12365018,U2032146)Inner Mongolia National Science Foundation(Nos.2024ZD23,2024FX30,2023MS01005)+1 种基金Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2217)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT23109)。
文摘The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four C_(6)D_(6)scintillator detectors coupled with pulse height weighting techniques.The resonance parameters were extracted using the multilevel multichannel R-matrix code SAMMY to fit the measured capture yields of the^(165)Ho(n,γ)reaction in the neutron energy range below100 eV.Subsequently,the resonance region’s capture cross sections were reconstructed based on the obtained parameters.Furthermore,the unresolved resonance average cross section of the^(165)Ho(n,γ)reaction was determined relative to that of the standard sample^(197)Au within the neutron energy range of 2 keV to 1 MeV.The experimental data were compared with the recommended nuclear data from the ENDF/B-VIII.0 library,as well as with results of calculations performed using the TALYS-1.9 code.The comparison revealed agreement between the measured^(165)Ho(n,γ)cross sections and these data.The present results are crucial for evaluating the^(165)Ho neutron capture cross section and thus enhance the quality of evaluated nuclear data libraries.They provide valuable guidance for nuclear theoretical models and nuclear astrophysical studies.
基金supported by the National Key Research and Development Program of China(No.2022YFA1602502)the National Natural Science Foundation of China(No.12127804).
文摘The direct and dissociative ionizations of oxygen molecule are investigated experimen-tally by electron collision with energies from 350 eV to 8000 eV.The absolute ionization cross sections for the product ions(O_(2)^(2+),O_(2)^(2+)O^(+),O^(2+),and their total)and two Coulomb explosion channels(O^(+)+O^(+)and O^(2+)+O^(+))are obtained by putting the data of O^(2+)on the scale of Ar+from O_(2)and Ar gases mixed with a fixed relative flow ratio of 1:1.The experimental errors are assessed by taking uncertainties of various factors into account.The present absolute cross sections are well consistent with the previous data in the overlapped energy range below 1000 eV.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
基金This work is supported by the National Natural Science Foundation of China(No.12375296)the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)+2 种基金the Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444,2020RC3054)the Youth Innovation Promotion Association CAS(No.2023014)the National Key Research and Development Plan(No.2022YFA1603303).
文摘The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.
基金supported by the National Natural Science Foundation of China(Grant No.12174147)the Chinese Scholarship Council(Grant Nos.202108210152 and 202006175016).
文摘The relativistic binary-encounter-Bethe model with Wannier-type threshold law is employed to obtain the inner-shell ionization cross sections of multi-electron atoms(Ni,Cu,Y,Ag,Au,Yb,Ta,and Pb)for positron impact energies from the thresholds up to 105ke V.There is good agreement between the present calculations and the experimental data.The constant in the acceleration term derived from the Wannier law is determined to be 0.2 and 0.5 for the K-and L-shells,respectively.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1832182,11875328,11761161001,and U2032137)the Natural Science Foundation of Guangdong Province,China(Nos.18zxxt65 and 2022A1515011184)+3 种基金the Science and Technology Development Fund,Macao SAR(Grant No.008/2017/AFJ)the Macao Young Scholars Program of China(No.AM201907)the China Postdoctoral Science Foundation(Nos.2016LH0045 and 2017M621573)the Fundamental Research Funds for the Central Universities(Nos.22qntd3101 and 2021qntd28).
文摘The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture events were detected using four C_(6)D_(6) detectors.The pulse-height weighting technique and double-bunch unfolding method based on Bayesian theory were used in the data analysis.Background deductions,normalization,and corrections were carefully considered to obtain reliable measurement results.The multilevel R-matrix Bayesian code SAMMY was used to extract the resonance parameters in the resolved resonance region(RRR).The average cross sections in the unresolved resonance region(URR)were obtained from 10 to 400 keV.The experimental results were compared with data from several evaluated libraries and previous experi-ments in the RRR and URR.The TALYS code was used to describe the average cross sections in the URR.The astrophysical Maxwell average cross sections(MACSs)of ^(79,81)Br from kT=5 to 100 keV were calculated over a sufficiently wide range of neutron energies.At a thermal energy of kT=30 keV,the MACS value for ^(79)Br 682±68 mb was in good agreement with the KADoNiS v1.0 recommended value.By contrast,the value of 293±29 mb for ^(81)Br was substantially higher than that of the evaluated database and the KADoNiS v1.0 recommended value.
基金The research is supported by Project of National Natural Science Foundation of China(30571455)and National "948" Project(2005-4-62)
文摘This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574096,10676025) and the Natural Science Foundation of Education Bureau of Anhui Province, China.
文摘A new anisotropic potential is fitted to ab initio data. The close-coupling approach is utilized to calculate state-tostate rotational excitation partial wave cross sections for elastic and inelastic collisions of He atom with HBr molecule based on the fitted potential. The calculation is performed separately at the incident energies: 75, 100 and 200 meV.The tendency of the elastic and inelastic rotational excitation partial wave cross sections varying with total angular quantum number J is obtained.
基金supported by the National Natural Science Foundation of China(Nos.11905018 and 11875328).
文摘This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.
基金supported by the National Natural science Foundation of China(Nos.11875016,12165006).
文摘A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(13.5 MeV,13.8 MeV,14.1 MeV,14.4 MeV,14.8 MeV)relative to the^(93)Nb(n,2n)^(92)mNb reaction CS.The target was high-purity natural Xe gas under high pressure.The T(d,n)4He reaction produces neutrons.TALYS code(version 1.95)for nuclear reactions was used for calculations,with default parameters and nuclear level density models.The uncertainties in the measured CS data were thoroughly analyzed using the covariance analysis method.The results were compared with theoretical values,evaluation data,and previous experimental findings.CS data of the 134Xe(n,2n)133mXe and 134Xe(n,2n)133gXe reactions and the corresponding isomeric CS ratios at 13.5 MeV,13.8 MeV,and 14.1 MeV neutron energies are reported for the first time.This research advances our knowledge of pre-equilibrium emission in the(n,2n)reaction channel by resolving inconsistencies in the Xe data.
基金supported by National Natural Science Foundation of China (Nos.10674097,10774106)
文摘Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlung photons and annihilation photons with the thick-target method are discussed with the Monte Carlo code PENELOPE. Meanwhile, the Monte Carlo method is also applied to determine the detection efficiencies of X- and γ-ray detectors. Our experimental K-shell ionization cross sections for Ti element are compared with the distorted-wave Born approximation (DWBA) theoretical predictions, and it is found that the agreement of the experimental data and theoretical values is good and this indicates that the experimental method adopted in this study is applicable.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10676025 and 10574096), the Discipline Foundation of Anqing Teachers College of China (Grant No 044-k06016000007) and the Anhui Provincial Natural Science Foundation of China (Grant No 20050610010).
文摘An interaction potential of the Ne-HC1 van der Waals complex is obtained by utilizing the Huxley analytic potential function to fit the accurate interaction energy data, which have been computed at the coupled cluster singles and doubles including connected triple excitations level and with the augmented correlation consistent polarized valence quintuple zeta basis set extended with a set of 3s3p2dlflg mid-bond functions [CCSD (T)/aug-cc-pV5Z-33211]. The close coupling calculation of state-to-state partial cross sections for collision of Ne with HC1 is first performed by employing the fitted interaction potential. This calculation is performed at the incident energies: 40, 60, 75 and 100 meV, separately. The effects of the long-range attractive and the short-range anisotropic interactions on the inelastic state-to-state partial cross sections are discussed in detail. Two maxima are present in the rotationally inelastic partial cross sections and they originate from different mechanisms.
基金supported by Shandong Provincial Natural Science Foundation of China (Grant No. Q2008A07)
文摘The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry. The angles 4°, 10° and 20° were selected as the scattering electron angles. Under high incident energy (≥500 eV) and high asymmetric detection energy, the binary peaks showed abnormal splits. Such abnormal splits have not been observed in atomic target and outer valence orbitals of ionic target, which indicates that an (e, 2e) process for inner valence orbitals of ionic target would be more complicated than outer valence orbitals. Furthermore, some pronounced peaks appeared at certain ejected angles. We considered that these pronounced peaks are probably related to one kind of double-binary collision.
基金supported by Universiti Teknologi Malaysia under Research University Grant Scheme under Grant No.05J60 and No.04H35Ministry of Higher Education under Fundamental Research Grant Scheme under Grant No.4F317 and No.4F565Nigerian Education Trust Fund under Tertiary Education Trust Fund
文摘Ozone is a green house gas. Ozone absorption cross sections have been reported with discrepancies and inconsistencies. In this paper, simultaneous effects of the optical path length and temperature variations on ozone gas absorption cross sections are investigated at different wavelengths. HITRAN 2012, the latest available line list on spectralcalc.com simulator, is used in this study to simulate ozone gas absorption cross sections in relation to the simultaneous effects of the optical path length and temperature at the wavelengths of 603 nm and 575 nm. Results obtained for gas cells with the optical path length from 10 cm to 120 cm show that the decrease in temperatures from 313 K to 103 K results in the increase in ozone gas absorption cross sections. At wavelengths of 603 nm and 575 nm, the percentage increase of ozone gas absorption cross sections is 1.22% and 0.71%, respectively. Results obtained in this study show that in the visible spectrum, at constant pressure, ozone gas absorption cross sections are dependent on the temperature and wavelength but do not depend on the optical path length. Analysis in this work addresses discrepancies in ozone gas absorption cross sections in relation to the temperature in the visible spectrum; thus, the results can be applied to get optimal configuration of high accuracy ozone gas sensors.
基金Project supported by the Shanghai Development Foundation from Science and Technology, China (Grant Nos 06JC14082 and 06QA14062), the National Natural Science Foundation of China (Grant No 10535010), and the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No KJXC3-SYW-N2).
文摘We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with the relativistic partial waves. The atom is present in an optical potential which is complex, spherically symmetric, and energy dependent. The optical potential of the atom is the sum of the direct static, dynamic polarization, local exchange and modified absorption potentials. The results obtained by using a modified absorption potential show significant improvements on the unmodified absorption potential results. The present results are generally in good agreement with experimental data available. In addition, the present results indicate that the structure of molecule manifests the observable effects on electron- molecule scattering.
文摘Certain broad low-energy peaks caused by a single partial wave in total cross sections are explained in terms of phase shifts. Such peaks have been associated with the real part of a Regge pole trajectory, having a maximum near an integer value of the angular momentum quantum number. At the peak energies, the pertinent partial-wave phase shift was shown to have a local maximum near a value π/2 modulo π. This implies no time delay in the semiclassical context. The phenomenon is a quantum effect, lacking a semiclassical interpretation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10974139 and 10964002), the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20050610010), the Science Technology Foundation of Guizhou Province of China (Grant No. [2009]2066) and Project of Aiding Elites' Research Condition of Guizhou Province (Grant No. TZJF-2008-42).
文摘This paper applies the multiple ellipsoid model to the 16Ne (20Ne, 28Ne, 34Ne)-Na2 collision systems, and calcu- lates integral cross sections for rotational excitation at the incident energy of 190 meV. It can be seen that the accuracy of the integral cross sections can be improved by increasing the number of equipotential ellipsoid surfaces. Moreover, by analysing the differences of these integral cross sections, it obtains the change rules of the integral cross sections with the increase of rotational angular quantum number j', and with the change of the mass of isotope substitution neon atom. Finally, the contribution of different regions of the potential to inelastic cross sections for 20Ne-Na2 collision system is investigated at relative incident energy of 190 meV.
基金supported by the National Natural Science Foundation of China (Grant Nos 10574018 and 10574020)
文摘The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.