The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward...The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.展开更多
Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other...Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other hand,it is easy to fall into local optimum.Therefore,for typical BA algorithms,the ability of exploration and exploitation is not strong enough and it is hard to find a precise result.In this paper,we propose a novel bat algorithm based on cross boundary learning(CBL)and uniform explosion strategy(UES),namely BABLUE in short,to avoid the above contradiction and achieve both fast convergence and high quality.Different from previous opposition-based learning,the proposed CBL can expand the search area of population and then maintain the ability of global exploration in the process of fast convergence.In order to enhance the ability of local exploitation of the proposed algorithm,we propose UES,which can achieve almost the same search precise as that of firework explosion algorithm but consume less computation resource.BABLUE is tested with numerous experiments on unimodal,multimodal,one-dimensional,high-dimensional and discrete problems,and then compared with other typical intelligent optimization algorithms.The results show that the proposed algorithm outperforms other algorithms.展开更多
We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following a...We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following advantages: the frame of the algorithms is unified, the method is simple, and its implementation and revision are easy.展开更多
No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Seve...No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods.展开更多
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe...In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.展开更多
To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clus...To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient.展开更多
Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Arti...Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Artificial Bee Colony Algorithm(CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy. Firstly, web service instantiation model was established. What is more, to overcome the problem of discrete and chaotic solution space, the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm(GA). The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms.展开更多
To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root...To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root-min-norm algorithm was described,but it is susceptive to noises with unstable performance in different SNRs.So the modified root-min-norm algorithm based on cross-spectral estimation was proposed,utilizing cross-correlation matrix and independence of different Gaussian noise series.Lots of simulation experiments were carried out to test performance of the algorithm in different conditions,and its statistical characteristics was presented.Simulation results show that the modified algorithm can efficiently suppress influence of the noises,and has high frequency resolution,high precision and high stability,and it is much superior to the classic DFT method.展开更多
基金funded by the State Grid Science and Technology Project“Research on Key Technologies for Prediction and Early Warning of Large-Scale Offshore Wind Power Ramp Events Based on Meteorological Data Enhancement”(4000-202318098A-1-1-ZN).
文摘The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.
基金Supported by the National Natural Science Foundation of China(61472289)the Open Project Program of the State Key Laboratory of Digital Manufacturing Equipment and Technology(DMETKF2017016)
文摘Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other hand,it is easy to fall into local optimum.Therefore,for typical BA algorithms,the ability of exploration and exploitation is not strong enough and it is hard to find a precise result.In this paper,we propose a novel bat algorithm based on cross boundary learning(CBL)and uniform explosion strategy(UES),namely BABLUE in short,to avoid the above contradiction and achieve both fast convergence and high quality.Different from previous opposition-based learning,the proposed CBL can expand the search area of population and then maintain the ability of global exploration in the process of fast convergence.In order to enhance the ability of local exploitation of the proposed algorithm,we propose UES,which can achieve almost the same search precise as that of firework explosion algorithm but consume less computation resource.BABLUE is tested with numerous experiments on unimodal,multimodal,one-dimensional,high-dimensional and discrete problems,and then compared with other typical intelligent optimization algorithms.The results show that the proposed algorithm outperforms other algorithms.
文摘We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following advantages: the frame of the algorithms is unified, the method is simple, and its implementation and revision are easy.
文摘No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods.
基金Science and Technology Plan of Gansu Province(No.144NKCA040)
文摘In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.
基金the National Natural Science Foundation of China(No.51474100)the Youth Science Fund of Heilongjiang Province in China(No.QC2010023)the Youth Outstanding Ability Program in Heilongjiang University of Science and Technology
文摘To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient.
基金supported by a grant from the Project "Multifunctional mobile phone R & D and industrialization of the Internet of things" supported by the Project of the Provincial Department of research (2011A090200008)partly supported by National Science and Technology Major Project (No. 2010ZX07102-006)+3 种基金the National Basic Research Program of China (973 Program) (No. 2011CB505402)the Major Program of the National Natural Science Foundation of China (No. 61170117)the National Natural Science Foundation of China (No.61432004)the National Key Research and Development Program (No.2016YFB1001404)
文摘Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Artificial Bee Colony Algorithm(CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy. Firstly, web service instantiation model was established. What is more, to overcome the problem of discrete and chaotic solution space, the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm(GA). The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms.
基金Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root-min-norm algorithm was described,but it is susceptive to noises with unstable performance in different SNRs.So the modified root-min-norm algorithm based on cross-spectral estimation was proposed,utilizing cross-correlation matrix and independence of different Gaussian noise series.Lots of simulation experiments were carried out to test performance of the algorithm in different conditions,and its statistical characteristics was presented.Simulation results show that the modified algorithm can efficiently suppress influence of the noises,and has high frequency resolution,high precision and high stability,and it is much superior to the classic DFT method.