期刊文献+
共找到1,867篇文章
< 1 2 94 >
每页显示 20 50 100
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
1
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
基于RIME优化VMD与TCN-Crossformer多尺度融合的短期电力负荷预测
2
作者 黄宇 胡怡然 +3 位作者 马金杰 梁博彦 崔玉雷 张浩 《电力科学与工程》 2025年第8期48-57,共10页
针对电力负荷序列的多尺度非平稳性与跨维度动态关联特征导致的协同建模难题,提出了一种基于霜冰优化算法(Rime optimization algorithm,RIME)改进的变分模态分解(Variational mode decomposition,VMD)与时间卷积网络(Temporal convolut... 针对电力负荷序列的多尺度非平稳性与跨维度动态关联特征导致的协同建模难题,提出了一种基于霜冰优化算法(Rime optimization algorithm,RIME)改进的变分模态分解(Variational mode decomposition,VMD)与时间卷积网络(Temporal convolutional network,TCN)-Crossformer多尺度融合的预测模型。首先,利用RIME算法以样本熵均值为适应度函数,自适应优化VMD的惩罚系数与模态数,抑制模态混叠并提升分解质量;其次,通过TCN的因果卷积与膨胀卷积结构提取各模态分量的局部时序波动特征,捕捉短期波动规律;最后,采用结合Crossformer的跨维度注意力机制,显式建模时间与特征维度的动态关联性,实现局部时序特征与全局依赖关系的多尺度协同融合。在南方某城市半小时级电力负荷数据集上的实验验证结果表明,相较于Informer等模型,所提模型的决定系数提升2.49%,平均绝对误差降低73.07%,且在四季预测中均表现出强鲁棒性。 展开更多
关键词 变分模态分解 跨维度注意力 RIME优化算法 时间卷积网络 crossformer
在线阅读 下载PDF
基于遗传算法与Hardy-Cross方法的矿井通风机控制 被引量:1
3
作者 杜聿静 马建华 《煤矿机械》 2024年第8期54-57,共4页
针对矿井通风机系统控制的复杂问题,提出了一种遗传算法与Hardy-Cross方法相结合的矿井通风控制,强化了其在处理离散变量和非凸搜索空间中寻找全局最优解的能力。通过数学形式化定义问题并结合基尔霍夫定律,确立了通风机网络的优化模型... 针对矿井通风机系统控制的复杂问题,提出了一种遗传算法与Hardy-Cross方法相结合的矿井通风控制,强化了其在处理离散变量和非凸搜索空间中寻找全局最优解的能力。通过数学形式化定义问题并结合基尔霍夫定律,确立了通风机网络的优化模型。根据实际用风情况智能调节通风机的供风量,以实现能源节约和安全生产的目标。通过对某煤矿的通风案例深入研究和验证,风扇的配置在优化气流方面表现出了卓越性能。该研究不仅为矿山工程领域提供了新的优化思路和方法,也为通风机系统的管理提供了重要参考。 展开更多
关键词 矿井通风 遗传算法 通风机控制 Hardy-cross方法
原文传递
基于Cross熵与改进麻雀搜索算法的图像分割模型
4
作者 黄蓉 陈倩诒 《计算机应用与软件》 北大核心 2024年第11期251-260,共10页
传统基于熵标准的图像分割法采用穷尽法搜索分割阈值,存在计算代价高、分割效率低的不足。针对这一问题,设计基于Cross熵与改进麻雀搜索算法的图像分割方法。为了提升标准麻雀搜索算法的寻优精度和寻优速率,利用反向学习机制进行种群初... 传统基于熵标准的图像分割法采用穷尽法搜索分割阈值,存在计算代价高、分割效率低的不足。针对这一问题,设计基于Cross熵与改进麻雀搜索算法的图像分割方法。为了提升标准麻雀搜索算法的寻优精度和寻优速率,利用反向学习机制进行种群初始化,改善初始种群结构,提升种群多样性和初始解质量。设计正余弦优化和惯性权重的发现者更新机制,提升发现者全局搜索能力。提出柯西混沌变异的追随者更新机制,结合混沌映射和柯西变异,避免算法产生局部最优。以Cross熵最小为标准评估个体适应度,利用改进麻雀搜索算法寻找图像分割最佳阈值,并实现图像分割。实验结果表明,改进算法在分割指标上表现优异,可以有效提升图像分割精度和分割效率。 展开更多
关键词 图像分割 交叉熵 麻雀搜索算法 反向学习 正余弦算法 柯西变异
在线阅读 下载PDF
A Novel Bat Algorithm based on Cross Boundary Learning and Uniform Explosion Strategy 被引量:2
5
作者 YONG Jia-shi HE Fa-zhi +1 位作者 LI Hao-ran ZHOU Wei-qing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第4期480-502,共23页
Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other... Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other hand,it is easy to fall into local optimum.Therefore,for typical BA algorithms,the ability of exploration and exploitation is not strong enough and it is hard to find a precise result.In this paper,we propose a novel bat algorithm based on cross boundary learning(CBL)and uniform explosion strategy(UES),namely BABLUE in short,to avoid the above contradiction and achieve both fast convergence and high quality.Different from previous opposition-based learning,the proposed CBL can expand the search area of population and then maintain the ability of global exploration in the process of fast convergence.In order to enhance the ability of local exploitation of the proposed algorithm,we propose UES,which can achieve almost the same search precise as that of firework explosion algorithm but consume less computation resource.BABLUE is tested with numerous experiments on unimodal,multimodal,one-dimensional,high-dimensional and discrete problems,and then compared with other typical intelligent optimization algorithms.The results show that the proposed algorithm outperforms other algorithms. 展开更多
关键词 Optimization BAT algorithm cross BOUNDARY LEARNING UNIFORM explosion STRATEGY
在线阅读 下载PDF
Edge Crossing Minimization Algorithm for Hierarchical Graphs Based on Genetic Algorithms 被引量:2
6
作者 Shen Wei xiang, Huang Jing wei College of Computer, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期555-559,共5页
We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following a... We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following advantages: the frame of the algorithms is unified, the method is simple, and its implementation and revision are easy. 展开更多
关键词 hierarchical graph edge crossing genetic algorithms
在线阅读 下载PDF
A Cross Entropy-Genetic Algorithm for m-Machines No-Wait Job-ShopScheduling Problem 被引量:5
7
作者 Budi Santosa Muhammad Arif Budiman Stefanus Eko Wiratno 《Journal of Intelligent Learning Systems and Applications》 2011年第3期171-180,共10页
No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Seve... No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods. 展开更多
关键词 NO-WAIT JOB SHOP Scheduling cross ENTROPY GENETIC algorithm Combinatorial Optimization
在线阅读 下载PDF
Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm 被引量:2
8
作者 LI Wei HU Xiao-hui WANG Hong-chuang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期42-49,共8页
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe... In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm. 展开更多
关键词 two-dimensional cross entropy biogeography-based optimization(BBO)algorithm multi-threshold image segmentation
在线阅读 下载PDF
Large Thinned Array Design Based on Multi-objective Cross Entropy Algorithm
9
作者 边莉 边晨源 王书民 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第4期437-442,共6页
To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clus... To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient. 展开更多
关键词 thinned array multi-objective optimization cross entropy(CE) algorithm particle swarm optimization(PSO) algorithm
原文传递
Service Composition Instantiation Based on Cross-Modified Artificial Bee Colony Algorithm
10
作者 Lei Huo Zhiliang Wang 《China Communications》 SCIE CSCD 2016年第10期233-244,共12页
Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Arti... Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Artificial Bee Colony Algorithm(CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy. Firstly, web service instantiation model was established. What is more, to overcome the problem of discrete and chaotic solution space, the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm(GA). The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms. 展开更多
关键词 optimization of service composition optimal service instantiation artificial bee colony algorithm swarm algorithm cross strategy
在线阅读 下载PDF
Coupled Cross-correlation Neural Network Algorithm for Principal Singular Triplet Extraction of a Cross-covariance Matrix 被引量:2
11
作者 Xiaowei Feng Xiangyu Kong Hongguang Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第2期149-156,共8页
This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a nov... This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a novel information criterion (NIC), in which the stationary points are singular triplet of the crosscorrelation matrix. Then, based on Newton's method, we obtain a coupled system of ordinary differential equations (ODEs) from the NIC. The ODEs have the same equilibria as the gradient of NIC, however, only the first PST of the system is stable (which is also the desired solution), and all others are (unstable) saddle points. Based on the system, we finally obtain a fast and stable algorithm for PST extraction. The proposed algorithm can solve the speed-stability problem that plagues most noncoupled learning rules. Moreover, the proposed algorithm can also be used to extract multiple PSTs effectively by using sequential method. © 2014 Chinese Association of Automation. 展开更多
关键词 Clustering algorithms Covariance matrix Data mining Differential equations EXTRACTION Learning algorithms Negative impedance converters Newton Raphson method Ordinary differential equations Singular value decomposition
在线阅读 下载PDF
Cross-spectral root-min-norm algorithm for harmonics analysis in electric power system
12
作者 裴亮 李晶 +1 位作者 曹茂永 刘世萱 《Journal of Measurement Science and Instrumentation》 CAS 2012年第1期66-69,共4页
To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root... To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root-min-norm algorithm was described,but it is susceptive to noises with unstable performance in different SNRs.So the modified root-min-norm algorithm based on cross-spectral estimation was proposed,utilizing cross-correlation matrix and independence of different Gaussian noise series.Lots of simulation experiments were carried out to test performance of the algorithm in different conditions,and its statistical characteristics was presented.Simulation results show that the modified algorithm can efficiently suppress influence of the noises,and has high frequency resolution,high precision and high stability,and it is much superior to the classic DFT method. 展开更多
关键词 electric power system inter-harmonics cross-spectral estimation singular value decomposition(SVD) subspace decomposition min-norm algorithm
在线阅读 下载PDF
基于滚动交叉验证的城市需水预测方法 被引量:1
13
作者 董增川 王佳晟 +4 位作者 崔璨 韩亚雷 陈荣豪 杨家亮 王淑云 《水资源保护》 北大核心 2025年第3期13-19,共7页
为提高机器学习算法在城市需水预测中的精度,提出了一种基于滚动交叉验证的系统化预测方法,包括影响因子指标体系构建、需水预测模型构建、结合滚动交叉验证的超参数优化以及模型性能的评估与优选,并以衡阳市为实例进行了方法验证。结... 为提高机器学习算法在城市需水预测中的精度,提出了一种基于滚动交叉验证的系统化预测方法,包括影响因子指标体系构建、需水预测模型构建、结合滚动交叉验证的超参数优化以及模型性能的评估与优选,并以衡阳市为实例进行了方法验证。结果表明:预测的2025年衡阳市需水量与规划值具有较高的一致性,验证了该方法的适用性和实际应用价值;该方法具有较强的普适性,可根据不同区域的经济社会发展趋势及用水结构灵活调整指标体系和模型组合,结合滚动交叉验证的超参数优化显著提高了模型的泛化能力和预测精度,更好地满足了真实应用场景的需水预测需求。 展开更多
关键词 城市需水预测 机器学习算法 超参数优化算法 滚动交叉验证 需水预测模型 衡阳市
在线阅读 下载PDF
基于改进加权LeaderRank算法的公证人机制跨链的研究
14
作者 刘春霞 杜一民 +2 位作者 高改梅 谢斌红 李志斌 《计算机应用与软件》 北大核心 2025年第1期328-332,397,共6页
公证人机制是基于信用背书节点的跨链机制。针对公证人背书节点信用评价单一问题,提出将加权LeaderRank算法运用到评价模型当中,通过收集节点历史交易评价信息计算出节点信用权值,参与信任度排序算法,得到安全可信的公证人节点,使得公... 公证人机制是基于信用背书节点的跨链机制。针对公证人背书节点信用评价单一问题,提出将加权LeaderRank算法运用到评价模型当中,通过收集节点历史交易评价信息计算出节点信用权值,参与信任度排序算法,得到安全可信的公证人节点,使得公证人机制更加稳定可信。研究结果表明,改进后的加权LeaderRank算法综合分析了节点历史交易评价信息和交易信任关系,对准确选取公证人节点、维护公证人机制安全可靠有重要意义。 展开更多
关键词 区块链 跨链 公证人机制 加权LeaderRank算法 信用评价
在线阅读 下载PDF
单电感双输出Buck变换器改进滑模自抗扰控制 被引量:1
15
作者 皇金锋 周杰 《工程科学与技术》 北大核心 2025年第4期248-258,共11页
针对单电感双输出(SIDO)Buck变换器发生输入电压跳变和负载扰动时输出支路间存在严重交叉影响使得输出电压暂态性能变差的问题,提出了一种基于降阶级联扩张状态观测器(CRESO)和改进非奇异终端滑模控制(TSMC)的自抗扰控制(ADRC)策略。首... 针对单电感双输出(SIDO)Buck变换器发生输入电压跳变和负载扰动时输出支路间存在严重交叉影响使得输出电压暂态性能变差的问题,提出了一种基于降阶级联扩张状态观测器(CRESO)和改进非奇异终端滑模控制(TSMC)的自抗扰控制(ADRC)策略。首先,根据状态空间平均法,建立了SIDO Buck变换器在电感电流连续模式下的数学模型,在此基础上分析了交叉影响产生的原理。其次,将变换器的主路和支路拟合成独立的2阶ADRC范式分开设计,针对传统扩张状态观测器(ESO)对状态变量和扰动观测精度不足的问题,利用CRESO对系统状态变量和内外总扰动项进行估计,以提升估计能力,并在相同带宽下提升扰动估计的速度。然后,利用非奇异TSMC设计状态误差反馈控制律,使滑模面能在有限时间内收敛到原点,代替比例-微分(PD)控制以提高系统的快速性和鲁棒性,并加入超扭矩算法进一步降低滑模控制的抖振现象。接着,通过特征值稳定判据和Lyapunov理论证明了CRESO和改进非奇异TSMC的稳定性,求出了CRESO的稳态误差范围和改进非奇异TSMC的收敛时间。最后,搭建了SIDO Buck变换器的仿真和实验平台,通过对比在输入电压和负载突变时,共模-差模电压(CMV-DMV)控制、传统ADRC和本文改进ADRC这3种策略的暂态性能差异,验证了本文所提控制策略的有效性和优越性。本文的控制策略减小了SIDO Buck变换器输出支路间的交叉影响,并提升了系统瞬态响应性能。 展开更多
关键词 单电感双输出 交叉影响 降阶级联扩张状态观测器 非奇异终端滑模 超扭矩控制算法
在线阅读 下载PDF
基于交叉验证的智能优化机器学习方法在喷管型面优化中的应用
16
作者 于勇 代无劫 胡俊 《北京理工大学学报》 北大核心 2025年第8期844-854,共11页
针对固定扩张比与扩张段长度的二维轴对称喷管进行扩张段型面优化设计,优化目标为喷管推力最大化,优化参数为贝塞尔曲线控制点的径向位置.通过结合十折交叉验证方法与优化算法对BP神经网络、支持向量回归、极限学习机3种机器学习模型的... 针对固定扩张比与扩张段长度的二维轴对称喷管进行扩张段型面优化设计,优化目标为喷管推力最大化,优化参数为贝塞尔曲线控制点的径向位置.通过结合十折交叉验证方法与优化算法对BP神经网络、支持向量回归、极限学习机3种机器学习模型的超参数进行优化,进而评估其在预测喷管出口推力任务上的表现.采用拟合精度最高的机器学习模型与代理优化算法相结合进行优化计算.仿真结果表明:通过对机器学习模型超参数的优化,3种机器学习模型均在测试集上表现出较高的预测精度,而BP神经网络在本文模型下的预测精度最高.通过基于机器学习代理模型的喷管型面优化方法,得到优化后的喷管推力提高1.958%,且BP神经网络对优化后的喷管推力预估误差仅为0.024 9%.通过与基于直接CFD计算的优化结果对比,可以证明所提方法在具有更高优化效率的同时具有较高的优化精度,优化后的喷管推力差别仅为0.007 5%,且优化耗时降低16.5%。 展开更多
关键词 优化设计 二维轴对称喷管 代理优化算法 机器学习 交叉验证
在线阅读 下载PDF
基于不同收敛交叉映射算法的土地利用变化对环境热舒适度的时空响应因果分析
17
作者 唐立娜 梁枫迪 +6 位作者 颜金珊 何秋琴 王宁 杨晨 张雨辰 郑欣雨 王琳 《生态学报》 北大核心 2025年第12期5619-5636,共18页
城市化不仅导致城市区域气温上升,还会改变城市内部的微气候条件,从而影响人体的热舒适度和身心健康。目前的研究多集中于城市化与温度之间的关联分析,对热舒适度这一更为综合的指标的因果关系探讨尚显不足。同时,不同土地利用类型对热... 城市化不仅导致城市区域气温上升,还会改变城市内部的微气候条件,从而影响人体的热舒适度和身心健康。目前的研究多集中于城市化与温度之间的关联分析,对热舒适度这一更为综合的指标的因果关系探讨尚显不足。同时,不同土地利用类型对热舒适度的影响呈现复杂的时空异质性,使得在大范围、长时间尺度上进行系统分析具有较大挑战。多空间收敛交叉映射方法通过重构多个空间单元的时间序列识别非线性因果关系,而地理收敛交叉映射方法结合地理邻接特征,能进一步提高空间因果推断的稳定性和可靠性。结合多空间收敛交叉映射和地理收敛交叉映射算法,系统分析了2005至2022年间福建省不同规模建成区以及2022年不同区域中各类土地利用类型与热舒适度之间的因果关系。研究结果显示,建设用地扩张与热舒适度在中小和中等级别建成区呈显著正向因果关系(P值分别为0.037和0.015),且其负面影响更为突出;在大规模建成区,裸地通常会加剧热负荷,而农田的影响因区域特征不同而存在差异;森林覆盖对改善热舒适度的作用最强,草地、灌木和水体对热舒适度的调节作用较弱,其效果在不同区域间存在差异,有时甚至产生不利影响。研究建议根据建成区的规模,合理增加森林、草地和灌木覆盖,并优化水体配置,以提升城市热舒适度。这一成果为基于热舒适优化的城市规划与环境管理提供了科学依据,具有重要的理论和实践意义。 展开更多
关键词 土地利用变化 热舒适度 收敛交叉映射算法 因果分析 城市规模
在线阅读 下载PDF
基于BP神经网络的扁平钢箱梁涡振性能预测
18
作者 白桦 杨光 +2 位作者 杨鹏瑞 杨鑫 高广中 《东南大学学报(自然科学版)》 北大核心 2025年第5期1388-1398,共11页
以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法... 以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法对BP神经网络的初始权值及阈值进行优化,预测扁平钢箱梁断面的扭转涡振性能。结果表明,利用遗传算法优化后的BP神经网络可以有效预测扁平钢箱梁断面的涡振特性,随机抽取的2个样本预测平均相对误差为8.18%。参数分析表明,扁平钢箱梁断面的腹板角度越小,箱梁断面越趋近于流线型,扭转涡振响应越小。扁平钢箱梁断面增加风嘴后可以减小扭转涡振响应,然而风嘴角度越大,扭转涡振响应越大。 展开更多
关键词 扁平钢箱梁 涡振 BP神经网络 遗传算法 交叉验证
在线阅读 下载PDF
基于稀疏对称十字阵列的低复杂度近场多信源定位算法
19
作者 李亚军 陈焕煜 +1 位作者 史意乔 吴皓威 《电讯技术》 北大核心 2025年第8期1281-1289,共9页
针对多个信源定位中存在的谱峰搜索维度较大、算法运算量大、参数无法自动配对等问题,建立了基于稀疏对称十字阵列(Sparse Symmetric Cross Array,SSCA)的近场多信源信号接收模型,并提出了针对该模型的低复杂度降维多信号分类(Reduced-d... 针对多个信源定位中存在的谱峰搜索维度较大、算法运算量大、参数无法自动配对等问题,建立了基于稀疏对称十字阵列(Sparse Symmetric Cross Array,SSCA)的近场多信源信号接收模型,并提出了针对该模型的低复杂度降维多信号分类(Reduced-dimension Multiple Signal Classification,RD-MUSIC)算法。SSCA结构具有中心对称的互素稀疏线阵结构。RD-MUSIC算法利用阵列结构的对称性,通过构造连接矩阵,将三维搜索转换成多个一维搜索,降低了算法的复杂度。该算法仅需2K+1次一维搜索就可以实现K个信源的定位,且能自动匹配多个信源的角度和距离参数。仿真结果表明,在相同的阵列结构下,与经典三维MUSIC算法相比,所提算法的复杂度降低了5~6个数量级;在相同阵元数量下,与均匀对称十字阵列相比,SSCA结构能够输出更为明显的谱峰,提高了空间分辨率,且其定位结果的均方根误差更小。 展开更多
关键词 近场信源定位 多信源定位 改进MUSIC算法 稀疏对称十字阵列
在线阅读 下载PDF
基于IWOA-LightGBM模型的矿用挖掘机发动机故障诊断研究
20
作者 顾清华 白书宇 王丹 《矿业研究与开发》 北大核心 2025年第9期184-191,共8页
针对矿用挖掘机发动机故障类别不均衡,导致故障诊断精度不高的问题,提出了一种改进的鲸鱼算法(WOA)优化轻量级梯度提升机(LightGBM)的矿用挖掘机发动机智能故障诊断方法。首先,利用递归特征交叉验证消除法(RFECV)对采集的挖掘机发动机... 针对矿用挖掘机发动机故障类别不均衡,导致故障诊断精度不高的问题,提出了一种改进的鲸鱼算法(WOA)优化轻量级梯度提升机(LightGBM)的矿用挖掘机发动机智能故障诊断方法。首先,利用递归特征交叉验证消除法(RFECV)对采集的挖掘机发动机故障数据的特征进行提取,删除不相关的特征。其次,采用Focal-Loss改进LightGBM的损失函数,提出一种改进的WOA对LightGBM的超参数寻优,构建新的诊断模型。最后,利用某矿山挖掘机发动机故障数据进行验证,并与常见的集成模型、调优框架和诊断算法进行对比分析。结果表明:所提出的矿用挖掘机发动机故障诊断模型IWOA-LightGBM的准确率和F1分数分别为98.08%和98.53%,诊断性能较好,可为矿山机械设备的智能诊断提供参考。 展开更多
关键词 矿用挖掘机 发动机 故障诊断 递归特征交叉验证消除法 轻量级梯度提升机 鲸鱼算法
原文传递
上一页 1 2 94 下一页 到第
使用帮助 返回顶部