The advent of Big Data has rendered Machine Learning tasks more intricate as they frequently involve higher-dimensional data.Feature Selection(FS)methods can abate the complexity of the data and enhance the accuracy,g...The advent of Big Data has rendered Machine Learning tasks more intricate as they frequently involve higher-dimensional data.Feature Selection(FS)methods can abate the complexity of the data and enhance the accuracy,generalizability,and interpretability of models.Meta-heuristic algorithms are often utilized for FS tasks due to their low requirements and efficient performance.This paper introduces an augmented Forensic-Based Investigation algorithm(DCFBI)that incorporates a Dynamic Individual Selection(DIS)and crisscross(CC)mechanism to improve the pursuit phase of the FBI.Moreover,a binary version of DCFBI(BDCFBI)is applied to FS.Experiments conducted on IEEE CEC 2017 with other metaheuristics demonstrate that DCFBI surpasses them in search capability.The influence of different mechanisms on the original FBI is analyzed on benchmark functions,while its scalability is verified by comparing it with the original FBI on benchmarks with varied dimensions.BDCFBI is then applied to 18 real datasets from the UCI machine learning database and the Wieslaw dataset to select near-optimal features,which are then compared with six renowned binary metaheuristics.The results show that BDCFBI can be more competitive than similar methods and acquire a subset of features with superior classification accuracy.展开更多
The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which ...The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which accurate and effective segmentation of medical images plays a pivotal role in improving clinical outcomes.Multilevel Threshold Image Segmentation(MTIS)is widely favored due to its stability and straightforward implementation.Especially when dealing with sophisticated anatomical structures,high-level thresholding is a crucial technique in identifying fine details.To enhance the accuracy of complex breast cancer image segmentation,this paper proposes an improved version of RIME optimizer EECRIME,denoted as the double Enhanced solution quality Crisscross RIME algorithm.The original RIME initially conducts an efficient optimization to target promising solutions.The double-enhanced solution quality(EESQ)mechanism is proposed for thorough exploitation without falling into local optimum.In contrast,the crisscross operations perform a further local exploration of the generated feasible solutions.The performance of EECRIME is verified with basic and advanced algorithms on IEEE CEC2017 benchmark functions.Furthermore,an EECRIME-based MTIS method in combination with Kapur’s entropy is applied to segment breast Infiltrating Ductal Carcinoma(IDC)histology images.The results demonstrate that the developed model significantly surpasses its competitors,establishing it as a practical approach for complex medical image processing.展开更多
针对光伏发电功率预测精度不高的问题,提出一种结合纵横交叉算法与改进的高斯过程回归算法(crisscross optimization algorithm and weighted Gaussian process regression,CSO-WGPR)的预测模型。首先,通过加权模糊聚类对天气类型进行划...针对光伏发电功率预测精度不高的问题,提出一种结合纵横交叉算法与改进的高斯过程回归算法(crisscross optimization algorithm and weighted Gaussian process regression,CSO-WGPR)的预测模型。首先,通过加权模糊聚类对天气类型进行划分,选出与预测日相同类型的相似日样本;其次,采用单类支持向量机(One-Class supportvectormachine,One-ClassSVM)算法结合传统高斯过程回归算法,建立改进后的高斯过程回归模型(weighted Gaussianprocess regression,WGPR),减小异常值数据对预测结果的不良影响;然后,采用纵横交叉算法(crisscross optimization algorithm,CSO)优化WGPR的超参数,进一步提高模型的预测精度。以澳洲爱丽丝泉光伏系统为例进行建模预测,真实数据仿真和实验结果表明,所提预测模型在晴天、阴天、雨天类型下具有更高的预测精度,验证了该方法的有效性。展开更多
In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimu...In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems.Therefore,in this work,a generalized oppositional MFO with crossover strategy,named GCMFO,is presented to overcome the mentioned defects.In the proposed GCMFO,GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate;crisscross search(CC)is adopted to promote the exploitation and/or exploration ability of MFO.The proposed algorithm’s performance is estimated by organizing a series of experiments;firstly,the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems.Secondly,GCMFO is applied to handle multilevel thresholding image segmentation problems.At last,GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases,including the appendicitis diagnosis,overweight statuses diagnosis,and thyroid cancer diagnosis.Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy.It also indicates that the presented GCMFO has a promising potential for application.展开更多
基金supported by Special Fund of Fundamental Scientific Research Business Expense for Higher School of Central Government(ZY20180119)the Natural Science Foundation of Zhejiang Province(LZ22F020005)+1 种基金the Natural Science Foundation of Hebei Province(D2022512001)National Natural Science Foundation of China(42164002,62076185).
文摘The advent of Big Data has rendered Machine Learning tasks more intricate as they frequently involve higher-dimensional data.Feature Selection(FS)methods can abate the complexity of the data and enhance the accuracy,generalizability,and interpretability of models.Meta-heuristic algorithms are often utilized for FS tasks due to their low requirements and efficient performance.This paper introduces an augmented Forensic-Based Investigation algorithm(DCFBI)that incorporates a Dynamic Individual Selection(DIS)and crisscross(CC)mechanism to improve the pursuit phase of the FBI.Moreover,a binary version of DCFBI(BDCFBI)is applied to FS.Experiments conducted on IEEE CEC 2017 with other metaheuristics demonstrate that DCFBI surpasses them in search capability.The influence of different mechanisms on the original FBI is analyzed on benchmark functions,while its scalability is verified by comparing it with the original FBI on benchmarks with varied dimensions.BDCFBI is then applied to 18 real datasets from the UCI machine learning database and the Wieslaw dataset to select near-optimal features,which are then compared with six renowned binary metaheuristics.The results show that BDCFBI can be more competitive than similar methods and acquire a subset of features with superior classification accuracy.
基金supported in part by the Natural Science Foundation of Zhejiang Province(LZ22F020005)National Natural Science Foundation of China(62076185,62301367).
文摘The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which accurate and effective segmentation of medical images plays a pivotal role in improving clinical outcomes.Multilevel Threshold Image Segmentation(MTIS)is widely favored due to its stability and straightforward implementation.Especially when dealing with sophisticated anatomical structures,high-level thresholding is a crucial technique in identifying fine details.To enhance the accuracy of complex breast cancer image segmentation,this paper proposes an improved version of RIME optimizer EECRIME,denoted as the double Enhanced solution quality Crisscross RIME algorithm.The original RIME initially conducts an efficient optimization to target promising solutions.The double-enhanced solution quality(EESQ)mechanism is proposed for thorough exploitation without falling into local optimum.In contrast,the crisscross operations perform a further local exploration of the generated feasible solutions.The performance of EECRIME is verified with basic and advanced algorithms on IEEE CEC2017 benchmark functions.Furthermore,an EECRIME-based MTIS method in combination with Kapur’s entropy is applied to segment breast Infiltrating Ductal Carcinoma(IDC)histology images.The results demonstrate that the developed model significantly surpasses its competitors,establishing it as a practical approach for complex medical image processing.
基金This research is supported by the National Natural Science Foundation of China(62076185,U1809209)Zhejiang Provincial Natural Science Foundation of China(LY21F020030)+2 种基金Wenzhou Science&Technology Bureau(2018ZG016)Taif University Researchers Supporting Project Number(TURSP-2020/125)Taif University,Taif,Saudi Arabia。
文摘In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems.Therefore,in this work,a generalized oppositional MFO with crossover strategy,named GCMFO,is presented to overcome the mentioned defects.In the proposed GCMFO,GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate;crisscross search(CC)is adopted to promote the exploitation and/or exploration ability of MFO.The proposed algorithm’s performance is estimated by organizing a series of experiments;firstly,the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems.Secondly,GCMFO is applied to handle multilevel thresholding image segmentation problems.At last,GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases,including the appendicitis diagnosis,overweight statuses diagnosis,and thyroid cancer diagnosis.Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy.It also indicates that the presented GCMFO has a promising potential for application.