Refractory high-entropy alloys(RHEAs)are promising for high-temperature applications due to their ex-ceptional mechanical properties at high temperatures.However,limited studies on their high-temperature fatigue behav...Refractory high-entropy alloys(RHEAs)are promising for high-temperature applications due to their ex-ceptional mechanical properties at high temperatures.However,limited studies on their high-temperature fatigue behavior hinder further development.This study systematically investigates the low-cycle fatigue(LCF)behavior of HfNbTiZr RHEA at room temperature(25℃)and elevated temperatures(350,450,and 600℃)through a combination of experimental analyses and dislocation-based damage-coupled crystal plasticity finite element(CPFE)simulations,to unveil the effects of creep damage on LCF behavior at varying temperatures.The results indicate that the LCF life dramatically decreases at an increased tem-perature,shifting from transgranular fatigue damage at lower temperatures(25-350℃)to a dual damage mechanism involving both intergranular fatigue and creep damage at higher temperatures(450-600℃).At 600℃,creep damage notably contributes to the accumulation of geometrically necessary dislocations(GNDs),crack initiation,and propagation at grain boundaries,and thus accelerates LCF failure.Compara-tive CPFE simulations reveal that creep damage significantly contributes to cyclic softening and reduction in elastic modulus,which also amplifies the strain localization under the LCF loading.The contribution of creep damage to the total stored energy density(SED)representing the overall damage increases with temperatures,accounting for 11%at 600℃.Additionally,CPFE simulations indicate that the creep dam-age notably influences the magnitude of GND density localized at grain boundaries.This study provides critical insights into the fatigue damage mechanisms of RHEAs,offering valuable guidance for their ap-plication in high temperatures.展开更多
Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure a...Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.展开更多
The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield.The force associated with the pipe string and the packer has b...The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield.The force associated with the pipe string and the packer has been determined under the sucking action of the oil well pump.Such analysis has been conducted for a real drilling well,taking into account the process of lifting,lowering,unblocking and water plugging.Comparison between field measured data and simulation data indicates that the model is reliable and accurate.The packer creep effect under different pressure differences has also been investigated in the framework of the same model.展开更多
Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloy...Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloys for its special strengthening effects. The addition of Re could effectively enhance the creep properties of the single-crystal superalloys; thus, the content of Re is considered as one of the characteristics in different-generation single-crystal superalloys. Owing to the fundamental importance of rhenium to nickel-based single-crystal superalloys, much progress has been made on understanding of the effect of rhenium in the single-crystal superalloys. While the effect of Re doping on the nickelbased superalloys is well documented, the origins of the socalled rhenium effect are still under debate. In this paper,the effect of Re doping on the single-crystal superalloys and progress in understanding the rhenium effect are reviewed. The characteristics of the d-states occupancy in the electronic structure of Re make it the slowest diffusion elements in the single-crystal superalloys, which is undoubtedly responsible for the rhenium effect, while the postulates of Re cluster and the enrichment of Re at the c/c0 interface are still under debate, and the synergistic action of Re with other alloying elements should be further studied.Additionally, the interaction of Re with interfacial dislocations seems to be a promising explanation for the rhenium effect. Finally, the addition of Ru could help suppress topologically close-packed(TCP) phase formation and strengthen the Re doping single-crystal superalloys.Understanding the mechanism of rhenium effect will be beneficial for the effective utilization of Re and the design of low-cost single-crystal superalloys.展开更多
The paper is concerned with the generalization of synthetic theory to the modeling of phenomena such as the Bauschinger negative effect, creep delay, reverse and inverse creep. Detailed calculations of plastic/creep s...The paper is concerned with the generalization of synthetic theory to the modeling of phenomena such as the Bauschinger negative effect, creep delay, reverse and inverse creep. Detailed calculations of plastic/creep strains are accompanied with the construction of loading surfaces that enhance the understanding of the processes studied. The calculated results show satisfactory agreement with experiments.展开更多
In order to know about the rheological properties of rock in a long range of the time scale,method of increasing temperature was brought forward to accelerate the rheological process of rock,which could extend the tim...In order to know about the rheological properties of rock in a long range of the time scale,method of increasing temperature was brought forward to accelerate the rheological process of rock,which could extend the time scale of experimental test data.Firstly,based on the generalized linear viscoelastic constitutive equation with temperature variable,the creep behavior of rock was divided into three types according to the different strain dependences of the time,that is,Hookean deformation,Newtonian flow,and retarded elasticity.Then the general equivalence relationship between time parameter and temperature parameter was derived for each type of strain.Finally,the relation between time parameter and temperature parameter in the whole creep was considered and the general theory of time-temperature equivalence effect(TTEE) of rock was established.This research reveals: ①The temperature effect on the instantaneous strain could be modified through vertical shift.②The key point of the TTEE of Newtonian flow depends on whether in the study of linear viscoelastic behavior of rock change of temperature is completely equivalent to a shift of the logarithmic time scale or not.③By plotting the results of a creep experiment performed at different temperatures and comparing the curves obtained,one can decide whether the rock considered have TTEE.④The TTEE of the whole creep should satisfy that the horizontal shift function of Newtonian flow and retarded elasticity is consentaneous.展开更多
A finite-strain homogenization creep model for composite fuels under irradiation conditions is developed and verified,with the irradiation creep strains of the fuel particles and matrix correlated to the macroscale cr...A finite-strain homogenization creep model for composite fuels under irradiation conditions is developed and verified,with the irradiation creep strains of the fuel particles and matrix correlated to the macroscale creep responses,excluding the contributions of volumetric strain induced by the irradiation swelling deformations of fuel particles.A finite element(FE)modeling method for uniaxial tensile creep tests is established with the irradiation effects of nuclear materials taken into account.The proposed models and simulation strategy are numerically implemented to a kind of composite nuclear fuel,and the predicted mesoscale creep behaviors and the macroscale creep responses are investigated.The research results indicate that:(1)the macroscale creep responses and the mesoscale stress and strain fields are all greatly affected by the irradiation swelling of fuel particles,owing to the strengthened mechanical interactions between the fuel particles and the matrix.(2)The effective creep rates for a certain case are approximately two constants before and after the critical fission density,which results from the accelerated fission gas swelling after fuel grain recrystallization,and the effects of macroscale tensile stress will be more enhanced at higher temperatures.(3)The macroscale creep contributions from the fuel particles and matrix depend mainly on the current volume fractions varying with fission density.(4)As a function of the macroscale stress,temperature,initial particle volume fraction and particle fission rate,a multi-variable mathematical model for effective creep rates is fitted out for the considered composite fuels,which matches well with the FE predictions.This study supplies important theoretical models and research methods for the multi-scale creep behaviors of various composite fuels and provides a basis for simulation of the thermal–mechanical behavior in related composite fuel elements and assemblies.展开更多
Creep feed grinding is a recently invented process of material handling. It combines high quality of the piece surface, productivity, and the possibility of automatic control. The main objectives of this research is t...Creep feed grinding is a recently invented process of material handling. It combines high quality of the piece surface, productivity, and the possibility of automatic control. The main objectives of this research is to study the influences of major process parameters and their interactions of creep feed grinding process such as wheel speed, workpiece speed, grinding depth, and dresser speed on the pin gauge dimensions of root of gas turbine blade by design of experiments (DOE). Experimental results are analyzed by analysis of variance (ANOVA) and empirical models of pin gauge dimensions of root are developed. The study found that higher wheel speed along with slower workpiece speed, lower grinding depth and higher dresser speed, cause to obtain best conditions for pin gauge dimensions of root.展开更多
基金National Science Foundation of China(Nos.52401212 and52401214)the National Science Foundation of Jiangsu Province(No.BK20241020)+1 种基金the Avi-ation Foundation(No.2023Z0530S6004)the Jiangsu Province University Collaborative Innovation Centre(High-Tech Ships)Pro-gram(No.XTCX202401).
文摘Refractory high-entropy alloys(RHEAs)are promising for high-temperature applications due to their ex-ceptional mechanical properties at high temperatures.However,limited studies on their high-temperature fatigue behavior hinder further development.This study systematically investigates the low-cycle fatigue(LCF)behavior of HfNbTiZr RHEA at room temperature(25℃)and elevated temperatures(350,450,and 600℃)through a combination of experimental analyses and dislocation-based damage-coupled crystal plasticity finite element(CPFE)simulations,to unveil the effects of creep damage on LCF behavior at varying temperatures.The results indicate that the LCF life dramatically decreases at an increased tem-perature,shifting from transgranular fatigue damage at lower temperatures(25-350℃)to a dual damage mechanism involving both intergranular fatigue and creep damage at higher temperatures(450-600℃).At 600℃,creep damage notably contributes to the accumulation of geometrically necessary dislocations(GNDs),crack initiation,and propagation at grain boundaries,and thus accelerates LCF failure.Compara-tive CPFE simulations reveal that creep damage significantly contributes to cyclic softening and reduction in elastic modulus,which also amplifies the strain localization under the LCF loading.The contribution of creep damage to the total stored energy density(SED)representing the overall damage increases with temperatures,accounting for 11%at 600℃.Additionally,CPFE simulations indicate that the creep dam-age notably influences the magnitude of GND density localized at grain boundaries.This study provides critical insights into the fatigue damage mechanisms of RHEAs,offering valuable guidance for their ap-plication in high temperatures.
文摘Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.
文摘The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield.The force associated with the pipe string and the packer has been determined under the sucking action of the oil well pump.Such analysis has been conducted for a real drilling well,taking into account the process of lifting,lowering,unblocking and water plugging.Comparison between field measured data and simulation data indicates that the model is reliable and accurate.The packer creep effect under different pressure differences has also been investigated in the framework of the same model.
基金financially supported by the National Basic Research Program of China(No.2009CB623701)the National Natural Science Foundation of China(Nos.11374174,50971075 and 51390471)
文摘Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloys for its special strengthening effects. The addition of Re could effectively enhance the creep properties of the single-crystal superalloys; thus, the content of Re is considered as one of the characteristics in different-generation single-crystal superalloys. Owing to the fundamental importance of rhenium to nickel-based single-crystal superalloys, much progress has been made on understanding of the effect of rhenium in the single-crystal superalloys. While the effect of Re doping on the nickelbased superalloys is well documented, the origins of the socalled rhenium effect are still under debate. In this paper,the effect of Re doping on the single-crystal superalloys and progress in understanding the rhenium effect are reviewed. The characteristics of the d-states occupancy in the electronic structure of Re make it the slowest diffusion elements in the single-crystal superalloys, which is undoubtedly responsible for the rhenium effect, while the postulates of Re cluster and the enrichment of Re at the c/c0 interface are still under debate, and the synergistic action of Re with other alloying elements should be further studied.Additionally, the interaction of Re with interfacial dislocations seems to be a promising explanation for the rhenium effect. Finally, the addition of Ru could help suppress topologically close-packed(TCP) phase formation and strengthen the Re doping single-crystal superalloys.Understanding the mechanism of rhenium effect will be beneficial for the effective utilization of Re and the design of low-cost single-crystal superalloys.
文摘The paper is concerned with the generalization of synthetic theory to the modeling of phenomena such as the Bauschinger negative effect, creep delay, reverse and inverse creep. Detailed calculations of plastic/creep strains are accompanied with the construction of loading surfaces that enhance the understanding of the processes studied. The calculated results show satisfactory agreement with experiments.
基金Supported by the Long-term evolution of stability and permeability of high-level radioactive waste repository surrounding rock under THMC coupling process
文摘In order to know about the rheological properties of rock in a long range of the time scale,method of increasing temperature was brought forward to accelerate the rheological process of rock,which could extend the time scale of experimental test data.Firstly,based on the generalized linear viscoelastic constitutive equation with temperature variable,the creep behavior of rock was divided into three types according to the different strain dependences of the time,that is,Hookean deformation,Newtonian flow,and retarded elasticity.Then the general equivalence relationship between time parameter and temperature parameter was derived for each type of strain.Finally,the relation between time parameter and temperature parameter in the whole creep was considered and the general theory of time-temperature equivalence effect(TTEE) of rock was established.This research reveals: ①The temperature effect on the instantaneous strain could be modified through vertical shift.②The key point of the TTEE of Newtonian flow depends on whether in the study of linear viscoelastic behavior of rock change of temperature is completely equivalent to a shift of the logarithmic time scale or not.③By plotting the results of a creep experiment performed at different temperatures and comparing the curves obtained,one can decide whether the rock considered have TTEE.④The TTEE of the whole creep should satisfy that the horizontal shift function of Newtonian flow and retarded elasticity is consentaneous.
基金supports from the National Natural Science Foundation of China (Nos.12132005,12102094 and 12135008)the Shanghai Sailing Program (21YF1402200)the foundation from the Science and Technology on Reactor System Design Technology Laboratory.
文摘A finite-strain homogenization creep model for composite fuels under irradiation conditions is developed and verified,with the irradiation creep strains of the fuel particles and matrix correlated to the macroscale creep responses,excluding the contributions of volumetric strain induced by the irradiation swelling deformations of fuel particles.A finite element(FE)modeling method for uniaxial tensile creep tests is established with the irradiation effects of nuclear materials taken into account.The proposed models and simulation strategy are numerically implemented to a kind of composite nuclear fuel,and the predicted mesoscale creep behaviors and the macroscale creep responses are investigated.The research results indicate that:(1)the macroscale creep responses and the mesoscale stress and strain fields are all greatly affected by the irradiation swelling of fuel particles,owing to the strengthened mechanical interactions between the fuel particles and the matrix.(2)The effective creep rates for a certain case are approximately two constants before and after the critical fission density,which results from the accelerated fission gas swelling after fuel grain recrystallization,and the effects of macroscale tensile stress will be more enhanced at higher temperatures.(3)The macroscale creep contributions from the fuel particles and matrix depend mainly on the current volume fractions varying with fission density.(4)As a function of the macroscale stress,temperature,initial particle volume fraction and particle fission rate,a multi-variable mathematical model for effective creep rates is fitted out for the considered composite fuels,which matches well with the FE predictions.This study supplies important theoretical models and research methods for the multi-scale creep behaviors of various composite fuels and provides a basis for simulation of the thermal–mechanical behavior in related composite fuel elements and assemblies.
文摘Creep feed grinding is a recently invented process of material handling. It combines high quality of the piece surface, productivity, and the possibility of automatic control. The main objectives of this research is to study the influences of major process parameters and their interactions of creep feed grinding process such as wheel speed, workpiece speed, grinding depth, and dresser speed on the pin gauge dimensions of root of gas turbine blade by design of experiments (DOE). Experimental results are analyzed by analysis of variance (ANOVA) and empirical models of pin gauge dimensions of root are developed. The study found that higher wheel speed along with slower workpiece speed, lower grinding depth and higher dresser speed, cause to obtain best conditions for pin gauge dimensions of root.