The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely "s...The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely "sharp" and "round", were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°- 20° with the step of 5°. The Reynolds number of the model was about 2 - 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.展开更多
The Cranking Nilsson model is applied to calculate the single-particle energy eigenvalues and eigenfunctions of nuclei in a strongly deformed potential. Accordingly, The L. D. Energy, the Strutinsky inertia, the L. D....The Cranking Nilsson model is applied to calculate the single-particle energy eigenvalues and eigenfunctions of nuclei in a strongly deformed potential. Accordingly, The L. D. Energy, the Strutinsky inertia, the L. D. inertia, the volume conservation factor , the smoothed energy, the BCS energy, the G-value and the electric quadrupole moment of the five uranium isotopes: 230U, 232U, 234U, 236U and 238U are calculated as functions of the deformation parameter. Furthermore, the single-particle Schrodinger fluid is applied to calculate the rigid-body model, the cranking-model and the equilibrium-model moments of inertia of the five uranium isotopes. Moreover, the collective model is applied to calculate the rotational energies of these isotopes. The best potential and deformation parameters are also given.展开更多
The seniority-and K-structures of the cranked single-j shell model wave functions are investigated in the particle-number-conserving formalism. With increasing rotational frequency ω, the seniority v-structure and th...The seniority-and K-structures of the cranked single-j shell model wave functions are investigated in the particle-number-conserving formalism. With increasing rotational frequency ω, the seniority v-structure and the K-structure of the low-lying bands become very complicated. For not too high ω (hω≤0.5 MeV) configurations with v=0, 2, 4 are dominant in the low-lying bands, while the v≥6 components are negligibly small. Components with various K-values (K≤10) involved in the low-lying bands are comparable, which indicates the deviation of the nuclear shape from axial symmetry is significant. The variation of the gap parameter and the spin alignment with ω are investigated.展开更多
The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition...The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).展开更多
Let N_(2)(m,n)denote the number of partitions of n without repeated odd parts whose M_(2)-rank is m and M_(2)(m,n)denote the number of partitions π of n with distinct odd parts and such that the partition has crank m...Let N_(2)(m,n)denote the number of partitions of n without repeated odd parts whose M_(2)-rank is m and M_(2)(m,n)denote the number of partitions π of n with distinct odd parts and such that the partition has crank m.In this paper,by means of some classical q-series identities,we prove some inequalities of N_(2)(m,n)and M_(2)(m,n).For example,for m≥4 and n≠2m+2,N_(2)(m,n)≤N_(2)(m,n+1).展开更多
In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,...In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,the standard P,FE discretization is applied so that the part of the coefficient matrix is symmetric positive definite,while near the interface,the maximum principle preserving immersed interface discretization is applied.In the time discretization,a modified Crank-Nicolson discretization is employed so that the hybrid FE-FD is stable and second order accurate.Correction terms are needed when the interface crosses grid lines.The moving interface is represented by the zero level set of a Lipschitz continuous function.Numerical experiments presented in this paper confirm second orderconvergence.展开更多
Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the cra...Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the crank shaft and the bearing seat of the upper beam is achieved by approximately simplifying the mechanical model of the crank shaft.The simulation for the load spectrum data of combined frame under the operating conditions of blanking or piling is performed using Matlab and the law of the load spectrum curves under these two conditions is analyzed.The simulation results show that under a no-load condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic sine wave and under the piling condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic pulse wave.The simulation results can provide a theoretical foundation for the load determination during the process of analyzing the dynamic characteristics on the combined frame of a closed high-speed press through the finite element method.展开更多
The variation in moments of inertia (J(1) and J(2)) with rotational frequency for the superdeformed bandsin odd-odd nuclei, 194Tl(la,lb), is investigated by using the particle-number conserving method for treating the...The variation in moments of inertia (J(1) and J(2)) with rotational frequency for the superdeformed bandsin odd-odd nuclei, 194Tl(la,lb), is investigated by using the particle-number conserving method for treating the pairinginteraction (monopole and quadrupole). The observed variations of J(1) and J(2) with ω are reproduced quite well inthe calculation and the contributions from each major shell are clearly displayed.展开更多
The microscopic mechanism of nine experimentally observed bands in ^178W is investigated using the particle-number conserving method of the cranked shell model with monopole and quadrupole paring interactions. The exp...The microscopic mechanism of nine experimentally observed bands in ^178W is investigated using the particle-number conserving method of the cranked shell model with monopole and quadrupole paring interactions. The experimental results, including the moments of inertia and angular momentum alignments of nine bands in ^178W, are reproduced well by the particle-number conserving calculations, in which no free parameter is involved. Calculations demonstrate that occurrence of sharp backbending comes mainly from the contribution of high-j intruder orbitals vi13/2 or πh11/2 and their interference effect with orbitals near the Fermi surface. Theω variation of the occupation probability of each cranked orbital and the contribution to moment of inertia from each cranked orbital are analyzed.展开更多
文摘The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely "sharp" and "round", were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°- 20° with the step of 5°. The Reynolds number of the model was about 2 - 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.
文摘The Cranking Nilsson model is applied to calculate the single-particle energy eigenvalues and eigenfunctions of nuclei in a strongly deformed potential. Accordingly, The L. D. Energy, the Strutinsky inertia, the L. D. inertia, the volume conservation factor , the smoothed energy, the BCS energy, the G-value and the electric quadrupole moment of the five uranium isotopes: 230U, 232U, 234U, 236U and 238U are calculated as functions of the deformation parameter. Furthermore, the single-particle Schrodinger fluid is applied to calculate the rigid-body model, the cranking-model and the equilibrium-model moments of inertia of the five uranium isotopes. Moreover, the collective model is applied to calculate the rotational energies of these isotopes. The best potential and deformation parameters are also given.
文摘The seniority-and K-structures of the cranked single-j shell model wave functions are investigated in the particle-number-conserving formalism. With increasing rotational frequency ω, the seniority v-structure and the K-structure of the low-lying bands become very complicated. For not too high ω (hω≤0.5 MeV) configurations with v=0, 2, 4 are dominant in the low-lying bands, while the v≥6 components are negligibly small. Components with various K-values (K≤10) involved in the low-lying bands are comparable, which indicates the deviation of the nuclear shape from axial symmetry is significant. The variation of the gap parameter and the spin alignment with ω are investigated.
基金supported by the National Natural Science Foundation of China(NSFC)(No.12205097)the Fundamental Research Funds for the Central Universities(No.2024MS071)。
文摘The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).
基金Supported by NSFC(No.12001309)Natural Science Foundation Youth Fund of Qinghai Province(No.2022-ZJ-972Q)。
文摘Let N_(2)(m,n)denote the number of partitions of n without repeated odd parts whose M_(2)-rank is m and M_(2)(m,n)denote the number of partitions π of n with distinct odd parts and such that the partition has crank m.In this paper,by means of some classical q-series identities,we prove some inequalities of N_(2)(m,n)and M_(2)(m,n).For example,for m≥4 and n≠2m+2,N_(2)(m,n)≤N_(2)(m,n+1).
基金partially supported by the National Natural Science Foundation of China(Grant No.12261070)the Ningxia Key Research and Development Project of China(Grant No.2022BSB03048)+2 种基金partially supported by the Simons(Grant No.633724)and by Fundacion Seneca grant 21760/IV/22partially supported by the Spanish national research project PID2019-108336GB-I00by Fundacion Séneca grant 21728/EE/22.Este trabajo es resultado de las estancias(21760/IV/22)y(21728/EE/22)financiadas por la Fundacion Séneca-Agencia de Ciencia y Tecnologia de la Region de Murcia con cargo al Programa Regional de Movilidad,Colaboracion Internacional e Intercambio de Conocimiento"Jimenez de la Espada".(Plan de Actuacion 2022).
文摘In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,the standard P,FE discretization is applied so that the part of the coefficient matrix is symmetric positive definite,while near the interface,the maximum principle preserving immersed interface discretization is applied.In the time discretization,a modified Crank-Nicolson discretization is employed so that the hybrid FE-FD is stable and second order accurate.Correction terms are needed when the interface crosses grid lines.The moving interface is represented by the zero level set of a Lipschitz continuous function.Numerical experiments presented in this paper confirm second orderconvergence.
基金The Key Technologies R& D Program of Jiangsu Province(No. BE2006036)Transformation Program of Science and Technology Achievements of Jiangsu Province (No. BA2008030)
文摘Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the crank shaft and the bearing seat of the upper beam is achieved by approximately simplifying the mechanical model of the crank shaft.The simulation for the load spectrum data of combined frame under the operating conditions of blanking or piling is performed using Matlab and the law of the load spectrum curves under these two conditions is analyzed.The simulation results show that under a no-load condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic sine wave and under the piling condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic pulse wave.The simulation results can provide a theoretical foundation for the load determination during the process of analyzing the dynamic characteristics on the combined frame of a closed high-speed press through the finite element method.
文摘The variation in moments of inertia (J(1) and J(2)) with rotational frequency for the superdeformed bandsin odd-odd nuclei, 194Tl(la,lb), is investigated by using the particle-number conserving method for treating the pairinginteraction (monopole and quadrupole). The observed variations of J(1) and J(2) with ω are reproduced quite well inthe calculation and the contributions from each major shell are clearly displayed.
基金National Natural Science Foundation of China under Grant No.10675006
文摘The microscopic mechanism of nine experimentally observed bands in ^178W is investigated using the particle-number conserving method of the cranked shell model with monopole and quadrupole paring interactions. The experimental results, including the moments of inertia and angular momentum alignments of nine bands in ^178W, are reproduced well by the particle-number conserving calculations, in which no free parameter is involved. Calculations demonstrate that occurrence of sharp backbending comes mainly from the contribution of high-j intruder orbitals vi13/2 or πh11/2 and their interference effect with orbitals near the Fermi surface. Theω variation of the occupation probability of each cranked orbital and the contribution to moment of inertia from each cranked orbital are analyzed.